
UML Class Diagrams (1.8.7) 9/2/2009

8-1

8 UML Class Diagrams
Java programs usually involve multiple classes, and there can be many
dependencies among these classes. To fully understand a multiple class
program, it is necessary to understand the interclass dependencies. Although
this can be done mentally for small programs, it is usually helpful to see these
dependencies in a class diagram. jGRASP automatically generates a class
diagram based on the Unified Modeling Language (UML). In addition to
providing an architectural view of your program, the UML class diagram is also
the basis for the Object Workbench which is described in a separate section.

Objectives – When you have completed this tutorial, you should be able to
generate the UML class diagram for your project, display the members of a class
as well as the dependencies between two classes, and navigate to the associated
source code.

The details of these objectives are captured in the hyperlinked topics listed
below.

8.1 Opening the Project
8.2 Generating the UML
8.3 Compiling and Running from the UML Window
8.4 Determining the Contents of the UML Class Diagram
8.5 Laying Out the UML Class Diagram
8.6 Displaying the Members of a Class
8.7 Displaying Dependencies Between Two Classes
8.8 Navigating to Source Code via the Info Tab
8.9 Finding a Class in the UML Diagram
8.10 Opening Source Code from UML
8.11 Saving the UML Layout
8.12 Printing the UML Diagram

UML Class Diagrams (1.8.7) 9/2/2009

8.1 Opening the Project
The jGRASP project file is used to determine which user classes to include in
the UML class diagram. The project should include all of your source files
(.java), and you may optionally include other files (e.g., .class, .dat, .txt, etc.).
You may create a new project file, then drag and drop files from the Browse tab
pane to the UML window.

To generate the UML, jGRASP uses information from both the source (.java)
and byte code (.class) files. Recall, .class files are generated when you compile
your Java program files. Hence, you must compile your .java files in order to
see the dependencies among the classes in the UML diagram. Note that the
.class files do not have to be in the project file.

If your project is not currently open, you need to open it by doing one of the
following:

(1) On the Desktop tool bar, click Project > Open Project, and then select the
project from the list of project files displayed in the Open Project dialog and
click the Open button.

(2) Alternatively, in the files section of the Browse tab, double-click the project
file.

When opened, the project and its contents appear in the open projects section of
the Browse tab, and the project name is displayed at the top of the Desktop. If
you need additional help with opening a project, review the previous tutorial on
Projects.

The remainder of this section assumes you have created your own project file or
that you will use PersonalLibraryProject from the examples that are included
with jGRASP.

TIP: Remember that your Java files must be compiled before you can see the
dependencies among your classes in the UML diagram. When you recompile
any file in a project, the UML diagram is automatically updated.

8.2 Generating the UML

In Figure 8-1, PersonalLibraryProject is shown in the Open Projects section of
the Browse tab along with a UML symbol and the list of files in the project.
To generate the UML class diagram, double-click the UML symbol .
Alternatively, on the Desktop menu, click on Project > Generate/Update UML
Class Diagram.

The UML window should open with a diagram of all class files in the project as
shown below. You can select one or more of the class symbols and drag them
around in the diagram. In the figure, the class containing main has been dragged

8-2

UML Class Diagrams (1.8.7) 9/2/2009

to the upper left of the diagram and the legend has been dragged to the lower
center.

Figure 8-1. Generating the UML

The UML window is divided into three panes. The top pane contains a panning
rectangle that allows you to reposition the entire UML diagram by dragging the
panning rectangle around. To the right of the panning rectangle are buttons for
scaling the UML: divide by 2 (/2), divide by 1.2 (/1.2), no scaling (1), multiply
by 1.2 (*1.2), and multiply by 2 (*2). In general, the class diagram is
automatically updated as required; however, the user can force an update by
clicking the Update UML diagram button on the desktop menu.

If your project includes class inheritance hierarchies and/or other dependencies
as in the example, then you should see the appropriate red dashed and solid
black dependency lines. The meaning of these lines is annotated in the legend
as appropriate.

8-3

UML Class Diagrams (1.8.7) 9/2/2009

8.3 Compiling and Running from the UML Window
The Build menu and buttons on the toolbar for the UML window are essentially
the same as the ones for the CSD window. For example, clicking the Compile
button compiles all classes in the project (Figure 8-2). When a class needs to
be recompiled due to edits, the class symbol in the UML diagram is marked with
red crosshatches (double diagonal lines). During compilation, the files are
marked and then unmarked when done. Single red diagonal lines in a class
symbol indicate that another class upon which the first class depends has been
modified. Clicking the Run button on the toolbar will launch the program as
an application if there is a main() method in one of the classes. Clicking on the
Run as Applet button will launch the program as an applet if one of the
classes is an applet. Similarly, clicking the Debug button or the Debug
Applet button will launch the program in debug mode. Note that for running
in debug mode, you should have a breakpoint set somewhere in the program so
that the debugger will stop.

Figure 8-2. Compiling Your Program

8-4

UML Class Diagrams (1.8.7) 9/2/2009

8.4 Determining the Contents of the UML Class Diagram
jGRASP provides one group of options to control the contents of your UML
diagram, and another group to determine which elements in the diagram are
actually displayed. Settings > UML Generation Settings allows you to control
the contents of the diagram by excluding certain categories of classes (e.g.,
external superclasses, external interfaces, and all other external references). The
View menu allows you to make visible (or hide) certain categories of classes
and dependencies that are actually in the UML diagram. Both options are
described below.

Most programs depend on one or more JDK classes. Suppose you want to
include these JDK classes in your UML diagram (the default is to exclude
them). You will need to change the UML generation settings in order to not
exclude these items from the diagram. Also, if you do not see the red and black
dependency lines expected, then you may need to change the View settings.
These are described below.

Excluding (or not) items from the diagram -
On the UML window menu, click on Settings
> UML Generation Settings, which will
bring up the UML Settings dialog. Generally
you should leave the top three items
unchecked so that they are not excluded from
the UML diagram. Now for our example of
not excluding the JDK classes, under Exclude
by Type of Class, uncheck (turn OFF) the
checkbox that excludes JDK Classes, as
shown in Figure 8-3. Note that synthetic
classes are created by the Java compiler and
are usually not included in the UML diagram.
After checking (or unchecking) the items so
that your dialog looks like the one in the
figure, click the OK button. This should close
the dialog and update the UML diagram. All JDK classes used by the project
classes should now be visible in the diagram as gray boxes. This is shown in
Figure 8-4 after the JDK classes have been dragged around. To remove them
from the diagram, you will need to turn on the exclude option. If you want to
leave them in the diagram but not always display them, see the next paragraph.
For more information see UML Settings in jGRASP Help.

Figure 8-3. Changing the
UML Settings

Making objects in the diagram visible (or not) - On the UML window menu,
click on View > Visible Objects, then check or uncheck the items on the list as
appropriate. In general, you will want all of the items on the list in View >

8-5

UML Class Diagrams (1.8.7) 9/2/2009

Visible Objects checked ON as shown in Figure 8-4. For example, for the JDK
classes and/or other classes outside the project to be visible, External
References must be checked ON. Clicking (checking) ON or OFF any of the
items on the Visible Objects list simply displays them or not, and their previous
layout is retained when they are redisplayed. Note that if items have been
excluded from the diagram via Settings > UML Generation Settings, as
described above, then making them visible will have no effect since they are not
part of the diagram. For more information see View Menu in jGRASP Help.

Figure 8-4. Making objects visible

Making dependencies visible - On the UML window menu, click on View >
Visible Dependencies, then check or uncheck the items on the list as
appropriate. The only two categories of dependencies in the example project are
Inheritance and Other. Inheritance dependencies are indicated by black lines
with closed arrowheads that point from a child to a parent to form an is-a
relationship. Red dashed lines with open arrowheads indicate other
dependencies. These include has-a relationships that indicate that a class uses
fields, methods, or constructors of another class. The red dashed arrow is drawn

8-6

UML Class Diagrams (1.8.7) 9/2/2009

from the class where an object is declared or referenced to the class where the
item is actually defined. In general, you probably want to make all dependencies
visible as indicated in Figure 8-5.

Figure 8-5. Making dependencies visible

Displaying the Legend - The legend has been visible in each of the UML
diagrams (figures) in this tutorial. To set the options for displaying the legend,
click View > Legend. Typically, you will want the following options checked
ON: Show Legend, Visible Items Only, and Small Font. Notice that if “Visible
Items Only” is checked ON, then an entry for JDK classes appears in the legend
only if JDK classes are visible in the UML diagram. Experiment by turning
on/off the options in View > Legend. When you initially generate your UML
diagram, you may have to pan around it to locate the legend. Scaling the UML
down (e.g., dividing by 2) may help. Once you locate it, just select it and drag
to the location where you want it as described in the next section.

8-7

UML Class Diagrams (1.8.7) 9/2/2009

8-8

8.5 Laying Out the UML Class Diagram
Currently, the jGRASP UML diagram has limited automatic layout capabilities.
However, manually arranging the class symbols in the diagram is
straightforward, and once this is done, jGRASP remembers your layout from
one generate/update to the next.

To begin, locate the class symbol that contains main. In our example, this
would be the PersonalLibrary class. Remember that the project name should
reflect the name of this class. Generally, you want this class near the top of the
diagram. Left click on the class symbol and then, while holding down the left
mouse button, drag the symbol to the area of the diagram where you want it, and
then release the mouse button. Now repeat this for the other class symbols until
you have the diagram looking like you want it. Keep in mind that class–
subclass relationships are indicated by the inheritance arrow and that these
should be laid out in a tree-down fashion. You can do this automatically by
selecting all classes for a particular class–subclass hierarchy (hold down SHIFT
and left-click each class). Then click Edit > Layout > Tree Down to perform
the operation; alternatively, you can right-click on a selected class or group of
classes, then on the pop up menu select Layout > Tree Down. Finally, right-
clicking in the background of the UML window with no classes selected will
allow you to lay out the entire diagram.

With a two or more classes selected, you can move them as a group. Figure 8-5
shows the UML diagram after the PersonalLibrary class has been repositioned to
the top left and the JDK classes have been dragged as a group to the lower part
of the diagram. You can experiment with making these external classes visible
by going to View > Visible Objects > then uncheck External References.

Here are several heuristics for laying out your UML diagrams:

(1) The class symbol that contains main should go near the top of the
diagram.

(2) Classes in an inheritance hierarchy should be laid out tree-down, and
then moved as group.

(3) Other dependencies should be laid out with the red dashed line pointing
downward.

(4) JDK classes, when included, should be toward the bottom of the
diagram.

(5) Line crossings should be minimized.

(6) The legend is usually below the diagram.

UML Class Diagrams (1.8.7) 9/2/2009

8.6 Displaying the Members of a Class
To display the fields, constructors, and methods of a class, right-click on the
class, then select Show Class Info which will pop the UML Info tab to the top
in the left tab pane. Also, in the left tab pane, you can click on the UML Info
tab to pop it to the top. Once the Info tab is on top, each time you select a class
its members will be displayed.

In Figure 8-6, external classes are not visible (View > Visible Objects > then
uncheck External References). Class Fiction has been selected and its fields,
constructors, and methods are displayed in the left pane. This information is
only available when the source code for a class is in the project. In the previous
example, the System class from package java.lang is an external class, so
selecting it would result in a “no data” message. If the only field you are seeing
is mainCharacter, click View > Info > Show Inheritance within Project. You
should now see the fields that are inherited by Fiction (i.e., author, pages, and
title).

Figure 8-6. Displaying class members

8-9

UML Class Diagrams (1.8.7) 9/2/2009

8.7 Displaying Dependencies Between Two Classes
Let’s reduce the number of classes in our UML diagram by not displaying the
JDK classes. Click View > Visible Objects and uncheck External References.
Now to display the dependencies between two classes, right-click on the arrow,
then select Show Dependency Info. You can also click on the UML Info tab to
pop it to the top. Once the Info tab is on top, each time you select an arrow, the
associated dependencies will be displayed.

In Figure 8-7, the edge drawn from PersonalLibrary to Fiction has been selected
as indicated by the large arrowhead. The list of dependencies in the Info tab
includes one constructor (Fiction) and one method (getMainCharacter). These
are the resources that PersonalLibrary uses from Fiction. Understanding the
dependencies among the classes in your program should provide you with a
more in-depth comprehension of the source code. Note that clicking on the
arrow between PersonalLibary and the PrintStream class in Figure 8-6 would
show that PersonalLibary is using two println() methods from the PrintStream
class. Make the External References visible again and try this.

Figure 8-7. Displaying the dependencies between two classes

8-10

UML Class Diagrams (1.8.7) 9/2/2009

8.8 Navigating to Source Code via the Info Tab
In the Info tab, a green symbol indicates that the item is defined or used in the
class rather than inherited from a parent class. Double-clicking on a green item
will take you to its definition or use in the source code. For example, clicking on
getMainCharacer() in Figure 8-7 above will open PersonalLibrary in a CSD
window with the line containing getMainCharacter() highlighted as shown in
Figure 8-8 below.

8.9 Finding a Class in the UML Diagram

Since a UML diagram can contain many classes, it may be difficult to locate a
particular class. In fact, the class may be off the screen. The Goto tab in the left
pane provides the list of classes in the project. Clicking on a class in the list
brings it to the center of the UML window.

8.10 Opening Source Code from UML

The UML diagram provides a convenient way to open source code files. Simply
double-click on a class symbol, and the source code for the class is opened in a
CSD window.

Figure 8-8. Navigating to where getMainCharacer is used in the CSD
Window

8-11

UML Class Diagrams (1.8.7) 9/2/2009

8-12

8.11 Saving the UML Layout
When you close a project, change to another project, or simply exit jGRASP,
your UML layout is automatically saved in the project file (.gpj). The next time
you start jGRASP, open the project, and open the UML window, you should
find your layout intact.

If the project file is created in the same directory as your program files (.java
and .class files), and if you added the source files with relative paths, then you
should be able to move, copy, or send the project and program files as a group
(e.g., email them to your instructor) without losing any of your layout.

8.12 Printing the UML Diagram
With a UML window open, click on File > UML Print Preview to see how
your diagram will look on the printed page. If okay, click the Print button in
the lower left corner of the Print Preview window. Otherwise, if the diagram is
too small or too large, you may want to go back and scale it using the scale
factors near the top right of the UML window, and then preview it again.

For additional details see UML Class Diagrams in jGRASP Help.

	8 UML Class Diagrams
	8.1 Opening the Project
	8.2 Generating the UML
	8.3 Compiling and Running from the UML Window
	8.4 Determining the Contents of the UML Class Diagram
	8.5 Laying Out the UML Class Diagram
	8.6 Displaying the Members of a Class
	8.7 Displaying Dependencies Between Two Classes
	8.8 Navigating to Source Code via the Info Tab
	8.9 Finding a Class in the UML Diagram
	8.10 Opening Source Code from UML
	8.11 Saving the UML Layout
	8.12 Printing the UML Diagram

