
Debugger (1.8.7) 9/2/2009

6-1

6 The Integrated Debugger
Your skill set for writing programs would not be complete without knowing how
to use a debugger. While a debugger is traditionally associated with finding
bugs, it can also be used as a general aid for understanding your program as you
develop it. jGRASP provides a highly visual debugger for Java, which is tightly
integrated with the CSD and UML windows, the Workbench, Viewers, and
Interactions. The jGRASP debugger includes all of the traditional features
expected in a debugger.

If the example program used in this section is not available to you, or if you do
not understand it, simply substitute your own program in the discussion.

Objectives – When you have completed this tutorial, you should be able to set
breakpoints and step through the program, either by single stepping or auto
stepping. You should also be able to display the dynamic state of objects
created by the program using the appropriate Object Viewer.

The details of these objectives are captured in the hyperlinked topics listed
below.

6.1 Preparing to Run the Debugger
6.2 Setting a Breakpoint
6.3 Running a Program in Debug Mode
6.4 Stepping Through a Program – the Debug Buttons
6.5 Stepping Through a Program – without Stepping In
6.6 Stepping Through a Program – and Stepping In
6.7 Opening Object Viewers
6.8 Debugging a Program

Debugger (1.8.7) 9/2/2009

6.1 Preparing to Run the Debugger
In preparation for using the debugger, we need to make sure that programs are
being compiled in debug mode. This is the default, so this option is probably
already turned on. With a CSD or UML window in focus, click Build on the
menu and make sure Debug Mode is checked. If the box in front of Debug
Mode is not checked, click on the box. When you click on Build again, you
should see that Debug Mode is checked. When you compile your program in
Debug Mode, information about the program is included in the .class file that
would normally be omitted. This allows the debugger to display useful details
as you execute the program. If your program has not been compiled with Debug
Mode checked, you should recompile it before proceeding.

Figure 6-1. Setting a breakpoint

6-2

Debugger (1.8.7) 9/2/2009

6.2 Setting a Breakpoint
In order to examine the state of your program at a particular statement, you need
to set a breakpoint. The statement you select must be “executable” rather than a
simple declaration. To set a breakpoint in a program, move the mouse to the
line of code and left-click the mouse to move the cursor there. Now right-click
on the line to display a set of options that includes Toggle Breakpoint. For
example, in Figure 6-1 the cursor is on the first executable line in main (which
declares Book hemingway …), and after Toggle Breakpoint is selected in the
options popup menu, a small red stop sign symbol appears in the left margin
of the line to indicate that a breakpoint has been set. To remove a breakpoint,
you repeat the process since this is a toggle action. You may set as many
breakpoints as needed.

You can also set a breakpoint by hovering the mouse over the leftmost column
of the line where you want to set the breakpoint. When you see the red
octagonal breakpoint symbol , you just left-click the mouse to set the
breakpoint. You can remove a breakpoint by clicking on the red octagon. This
second approach is the one most commonly used for setting and removing
breakpoints.

6.3 Running a Program in Debug Mode

After compiling your program in Debug Mode and setting one or more
breakpoints, you are ready to run your program with the debugger. You can
start the debugger in one of two ways:

(1) Click Build – Debug on the CSD window menu, or

(2) Click the Debug button on the toolbar.

 After you start the debug session, several things happen. In the Run window
near the bottom of the Desktop, you should see a message indicating that the
debugger has been launched. In the CSD window, the line with the breakpoint
set is eventually highlighted, indicating that the program will execute this
statement next. On the left side of the jGRASP desktop, the Debug tab is
popped to the top. Each of these can be seen in Figure 6-2. Notice the Debug
tab pane is further divided into three sub-panes or sections labeled Threads,
Call Stack, and Variables/Eval. Each of these sections can be resized by
selecting and dragging one of the horizontal partitions.

The Threads section lists all of the active threads running in the program. In
the example, the red thread symbol indicates the program is stopped in main,
while the green symbols indicate that the other threads are running. Advanced
users should find this feature useful for starting and stopping individual threads
in their programs. However, since beginners and intermediate users rarely use

6-3

Debugger (1.8.7) 9/2/2009

multi-threading, the thread section is closed when the debugger is initially
started. Once the Threads section is dragged open, it remains open for the
duration of the jGRASP session or until it is closed.

The Call Stack section is useful to all levels of users since it shows the current
call stack and allows the user to switch from one level to another in the call
stack. When this occurs, the CSD window that contains the source code
associated with a particular call is popped to the top of the desktop.

The Variables/Eval section shows the details of the current state of the program
in the Variables tab and provides an easy way to evaluate expressions involving
these variables in the Eval tab. Most of your attention will be focused on the
Variables tab where you can monitor all current values in the program. From
the Variables tab, you can also launch separate viewers on any primitives or
objects as well as fields of objects.

6-4

Figure 6-2. Desktop after debugger is started

Threads Section (folded)

Call Stack Section Highlighted Line When Stopped
at Breakpoint

Variables/Eval Section

Debugger (1.8.7) 9/2/2009

6.4 Stepping Through a Program – the Debug Buttons

After the program stops at the breakpoint (Figure 6-2), you can use the buttons
at the top of the Debug tab to step, step into a method call, step out of a method,
run to the cursor, pause the current thread, resume, turn on/off auto step mode,
turn on/off auto resume mode, and suspend new threads. The sequence of
statements that is executed when you run your program is called the control path
(or simply path). If your program includes statements with conditions (e.g., if or
while statements), the control path will reflect the true or false state of the
conditions in these statements.

 Clicking the Step button will single step to the next statement. The
highlighted line in the CSD window indicates the statement that’s about to
be executed. When the Step button is clicked, that statement is executed
and the “highlighting” is moved to the next statement along the control
path.

 Clicking the Step in button for a statement with a method call that’s part of
the user’s source code will open the new file, if it’s not already open, and
pop its CSD window to the top with the current statement highlighted. The
top entry in the Call Stack indicates where you are in the program. Note
that clicking the Step in button for a statement without a method call is
equivalent to clicking Step.

 Clicking the Step out button will take the debugger back to the point where
the current method was called (i.e., it will step out of the current method).
The Call Stack will be updated accordingly.

 Clicking the Run to Cursor button will cause your program to step
automatically until the statement with the cursor L is reached. If the cursor
is not on a statement along the control path, the program will stop at the
next breakpoint it encounters or at the end of the program. The Run to
Cursor button is convenient since placing the cursor on a statement is like
setting “temporary” breakpoint.

6-5

 Clicking the Pause button will suspend the program running in debug
mode. Note that if you didn’t have a breakpoint set in your code, you may
have to select the main thread in the Threads section before the Pause
button is available. After the program has halted, refer to the Call Stack and
select the last method in your source code that was invoked. This should

Debugger (1.8.7) 9/2/2009

open the CSD window containing the method with the current line
highlighted. Click the step button to advance through the code.

 Clicking the Resume button advances the program along the control path to
the next breakpoint or to the end of the program. If you have set a
breakpoint in a CSD window containing another file and this breakpoint is
on the control path (i.e., in a method that gets called), then this CSD
window will pop to the top when the breakpoint is reached.

 The Auto Step button is used to toggle off and on a mode which allows you
to step repeatedly after clicking the step button only once. This is an
extremely useful feature in that it essentially let’s you watch your program
run. Notice that with this feature turned on, a Delay slider bar appears
beneath the Debug controls. This allows you to set the delay between steps
from 0 to 26 seconds (default is .5 seconds). While the program is auto
stepping, you can stop the program by clicking the Pause button.
Clicking the Step button again continues the auto stepping. Remember
after turning on Auto Step , you always have to click the step button
once to get things rolling.

 The Auto Resume button is used to toggle off and on a mode which allows
you to resume repeatedly after clicking the Resume button only once.
The effect is that your program moves from breakpoint to breakpoint using
the delay indicated on the delay slider bar. As with auto step above, you
can click the Pause button to interrupt the auto resume; then click the
Resume button again to continue the auto resume.

 The Use Byte Code Size Steps button toggles on and off the mode that
allows you to step through a program in the smallest increments possible.
With this feature off, the step size is approximately one source code
statement, which is what most users want to see. This feature is seldom
needed by beginning and intermediate programmers.

 The Suspend New Threads button toggles on and off the mode that will
immediately suspend any new threads that start. With this feature on when
the debugging process is started, all startup threads are suspended as soon as
is possible. Unless you are writing programs with multiple threads, you
should leave the feature turned off.

As you move through the program, you can watch the call stack and contents of
variables change dynamically with each step. The integrated debugger is

6-6

Debugger (1.8.7) 9/2/2009

especially useful for watching the creation of objects as the user steps through
various levels of constructors. The jGRASP debugger can be used very
effectively to explain programs, since a major part of understanding a program
is keeping track (mentally or otherwise) of the state of the program as one reads
from line to line. We will make two passes through the example program as we
explain it. During the first pass, we will “step” through the program without
“stepping into” any of the method calls, so we can concentrate on the Variables
section.

6.5 Stepping Through a Program – without Stepping In

After initially arriving at the breakpoint in Figure 6-2, the Variables/ Settings
section indicates that no local variables exist. Figure 6-3 shows the results of
clicking the Step button to move to the next statement. Notice that under
Locals in the Variables/Eval section, we now have an instance of Book called
hemingway. Objects, represented by a colored square, can be opened and closed
by clicking the “handle” in front of the square object. Primitives, like the
integer pages, are represented by colored triangles. In Figure 6-3, hemingway
has been opened to show the author, title, and pages fields. Each of the String
instances (e.g., author) can be opened to show the details of a String object,
including the character array that holds the actual value of the string.

Since hemingway is an instance of Book, the fields in hemingway are marked
with green object or primitive symbols to indicate that they were declared in
Book. Notice that the symbols for author and title have red borders since they
were declared to be private in Book. This indicates that they are inaccessible
from the current context of main in PersonalLibrary. The field pages, which
was declared to be protected in Book, has a symbol without a red border. The
reason for this is somewhat subtle. The protected field pages is accessible in all
subclasses of Book as well as in any class contained in the Java package
containing Book. Since the PersonalLibrary program is not in a package, it is
considered to be in the “default package”. Thus, since Book is also in the
default package, the protected field pages is accessible to PersonalLibrary.

After executing the statement indicated in Figure 6-3, an instance of the Fiction
class called clancy is created as shown in Figure 6-4. In the figure, clancy has
been opened to reveal its fields. The field “mainCharacter” is green, indicating
that it is defined in Fiction. The other fields (author, title, and pages) are orange,
which indicates that these fields were inherited from Book.

6-7

Debugger (1.8.7) 9/2/2009

Figure 6-3. Desktop after hemingway (book) is created

As you continue to step though your program, you should see output of the
program displayed in the Run I/O window in the lower half of the Desktop.
Eventually, you should reach the end of the program and see it terminate. When
this occurs, the Debug tab should become blank, indicating that the program is
no longer running.

6-8

Debugger (1.8.7) 9/2/2009

Figure 6-4. After next step and "clancy" created

6.6 Stepping Through a Program – and Stepping In

Now we are ready to make a second pass and “step in” to the methods called.
Tracing through a program by following the calls to methods can be quite
instructive in the obvious way. In the object-oriented paradigm, it is quite useful
for illustrating the concept of constructors. As before, we need to run the
example program in the debugger by clicking Build – Debug on the CSD
window menu or by clicking the debug button on the toolbar. After arriving
at the breakpoint, we click the Step in button and the constructor for class
Book pops up in the CSD window (Figure 6-5). Notice that the Call Stack in the
Debug tab indicates that you have moved into Book from PersonalLibrary (i.e.,
the entry for Book is listed above PersonalLibrary in the call stack). If you click
on the PersonalLibrary entry in the call stack, the associated CSD window will
pop to the top and you will see the variables associated with it. If you then click
the Book entry, its CSD window will pop to the top and you will see the

6-9

Debugger (1.8.7) 9/2/2009

variables associated with the call to Book’s constructor. In Figure 6-5, the entry
for this has been expanded in the Variables section. The this object represents
the object that is being constructed. Notice that none of the fields have a red
border since we are inside the Book class. As you step through the constructor,
you should see the fields in this get initialized to the values passed in as
arguments. Also, note the id for this (it is 356 in our example debug session; it
may be a different number in your session). You can then step through the
constructor in the usual way, eventually returning to the statement in the main
program that called the constructor. One more step should finally get you to the
next statement, and you should see hemingway in the Variables section with the
same id as you saw in the constructor as it was being built. If you expand
hemingway, you should see that the red borders are back on author and title
since we’re no longer in the Book class.

Figure 6-5. After next stepping into the Book constructor

There are many other scenarios where this approach of tracing through the
process of object construction is useful and instructive. For example, consider

6-10

Debugger (1.8.7) 9/2/2009

the case where the Fiction constructor for “clancy” is called and it in turn calls
the super constructor located in Book. By stepping into each call, you can see
not only how the program proceeds through the constructor’s code, but also how
fields are initialized.

Another even more common example is when the toString method of an object
is invoked indirectly in a print statement (System.out.println). The debugger
actually takes the user to the object’s respective toString method.

6.7 Opening Object Viewers

A separate Viewer window can be opened for any primitive or object (or field of
an object) displayed in Variables section of the Debug tab. All objects have a
basic view which is similar to the view shown in the Debug tab. However,
when a separate viewer window is opened for an entry, some objects will have
additional views.

The easiest way to open a viewer is to left-click on an object and drag it from
the workbench to the location where you want the viewer to open. This will
open a “view by name” viewer. You can also open a viewer by right-clicking on
the object and selecting either View by Value or View by Name.

Figure 6-6 shows an object viewer for the title field of hemingway in Figure 6-4,
which is a String object in an instance of Book. Formatted is the default “view”
for a String object which is especially useful when viewing a String object with
a large value (e.g., a page of text). In Figure 6-7, the Basic view has been
selected and expanded to show the details of the String object. Notice that the
first field is value[21] which is a character array holding the actual value of the
string. If we open a separate viewer on value, we have a Presentation view of
the array as shown in Figure 6-8. Notice that the first element (‘G’) in the array
has been selected and this opened a subview of type character. The subview
displays the ‘G’ and its integral value of 71. If our example had been an array of
strings (e.g., a list of words) then selecting an array element would have
displayed the formatted view of a String object in the subview. Presentation
view is the default for arrays. There is also a view called Array Elements which
is quite useful for large arrays.

Figure 6-6. Viewing a String Object

6-11

Debugger (1.8.7) 9/2/2009

Figure 6-7. Basic view of a string (expanded to
see fields)

Figure 6-8. Presentation View of hemingway.title.value

You are encouraged to open separate viewers for any of the primitives and
objects in the Variables section of the Debug tab. In addition to providing
multiple views of the object, each viewer includes an Invoke Method button
for the object being viewed.

6-12

Debugger (1.8.7) 9/2/2009

In the tutorial Viewers for Data Structures, many other examples are presented
along with a more detailed description of viewers in general. The "Structure
Identifier" viewer is also introduced. This viewer attempts to automatically
recognize and display linked lists, binary trees, and array wrappers (lists, stacks,
queues, etc.) when opened on an object during debugging or workbench use.

6.8 Debugging a Program
You have, no doubt, noticed that the previous discussion was only indirectly
related to the activity of finding and removing bugs from your program. It was
intended to show you how to set and unset breakpoints and how to step through
your program. Typically, to find a bug in your program, you need to have an
idea where in the program things are going wrong. The strategy is to set a
breakpoint on a line of code prior to the line where you think the problem
occurs. When the program gets to the breakpoint, you can inspect the variables
of interest to ensure that they have the correct values. Assuming the values are
okay, you can begin stepping through the program, watching for the error to
occur. Of course, if the value of one or more of the variables was wrong at the
breakpoint, you will need to set the breakpoint earlier in the program.

You can also set several types of “watches” on a field of an object. In Figure 6-
9, a Watch for Access has been set on the title in hemingway just after it was
created. If you click the Resume button at this point, with no breakpoints set
before the end of the program, the next place the program should stop is in the
toString method of Book in conjunction with the println statement for
hemingway. This is because the title field of hemingway is accessed in the
statement:

 return("\nAuthor: " + author +
 "\nTitle: " + title +
 "\nPages: " + pages);
Note that setting Watch All for Access on the title field of hemingway sets the
watch on all occurrences of the title field (i.e., in all instances of Book, Fiction,
and Novel).

As your programs become more complex, the debugger can be an extremely
useful for both understanding your program and isolating bugs. For additional
details, see Integrated Java Debugger in jGRASP Help.

6-13

Debugger (1.8.7) 9/2/2009

6-14

Figure 6-9. Setting a Watch for Access

Figure 6-10. Stopping at a Watch for Access to hemingway.title

	6 The Integrated Debugger
	6.1 Preparing to Run the Debugger
	6.2 Setting a Breakpoint
	6.3 Running a Program in Debug Mode
	6.4 Stepping Through a Program – the Debug Buttons
	6.5 Stepping Through a Program – without Stepping In
	6.6 Stepping Through a Program – and Stepping In
	6.7 Opening Object Viewers
	6.8 Debugging a Program

