
Interactions (1.8.7) 9/2/2009

4-1

4 Interactions
The Interactions feature in jGRASP allows the user to enter Java statements
and expressions and then execute/evaluate them immediately. This feature is
not meant to be a replacement for the traditional edit-compile-run cycle, but
rather a convenient way to experiment with Java statements and expressions.
The Interactions feature is relevant for beginning as well as advanced users who
are programming in Java. The feature was introduced briefly in Getting Started
and Getting Started with Objects. In this tutorial, we provide a more complete
description with detailed examples. If you are not familiar with the basic
features of jGRASP (e.g., compiling, running, and debugging), you are
encouraged to read Getting Started.

Objectives – When you have completed this tutorial, you should be able to use
Interactions with the Object Workbench, Debugger, and Viewers in jGRASP.
You should be able to declare primitive variables, assign values, and use them in
expressions. You should be able declare reference variables, create instances of
objects, invoke methods on the objects, and use the reference variables in
expressions. You should be able use interactions containing variables from the
workbench and debugger. You should be able to copy interactions and paste
them to a CSD window as source code.

The details of these objectives are captured in the hyperlinked topics listed
below.

4.1 Starting Interactions
4.2 Interactions with Primitives
4.3 Interactions with Reference Types
4.4 Interactions with Your Own Classes
4.5 Working with Reference Types – Important Details
4.6 Interactions with the Debugger

Interactions (1.8.7) 9/2/2009

4.1 Starting Interactions

jGRASP

Let’s begin by starting jGRASP and then closing any files that had
been left open from the previous session. We need to select the
Interactions tab in the lower window of the jGRASP desktop as
shown in Figure 4-1. As indicated in the figure, an Interactions

session can be terminated by clicking the End button, the window can be
cleared by clicking he Clear button, and the window containing the Interactions
tab can be resized by dragging on the partitions or by clicking on the up/down
arrows at the top or left end of each of the partitions. Many users find it helpful
to switch between a full-width message pane across the bottom of the desktop
and a full-height tab pane on the left. The button (or) in the lower left
corner of the desktop provides convenient way to change the layout of the
partitions.

The blue triangle ¼ in the Interactions window indicates where we should enter
our first interaction. Click in the window to gain focus, and we are ready to
begin.

Figure 4-1. The jGRASP Virtual Desktop

Interactions
Tab Pane

Resize or
close/open
partitions

End a session

Clear the window

Change
layout of
partitions

4-2

Interactions (1.8.7) 9/2/2009

4.2 Interactions with Primitives

Our first interactions will explore Java primitive types. Let’s begin by declaring
an integer variable i and assigning it an initial value of 10. After entering the
following statement, press ENTER.

 int i = 10;
As soon as you press ENTER, the Interactions session will be started, and the
variable i should appear on the Workbench.

Now enter the code to declare a variable x of type double:

 double x = 29.9;
After pressing ENTER, x should appear on the Workbench.

Now let’s enter an expression that uses the two variables i and x. Note that
an expression does not end with a semi-colon (;)

 i + x
As soon as ENTER is pressed the expression will be evaluated, and we should
see 29.9 displayed below the expression. Figure 4-2 shows the desktop after the
interactions above have been entered.

Figure 4-2. Our first interactions

4-3

Interactions (1.8.7) 9/2/2009

Now let’s try a few more interactions that use i and x.

 i = 10;
 i = i + 10;

 x = x + 3.5;
As you enter each of these, be sure to observe the changes to the variables on the
Workbench.

Errors – If a statement contains an error, a message similar to a compiler error
message will be displayed.

Repeating a statement – To find a statement you have already entered, press
the UP and DOWN arrow keys to scroll through the previous statements
(history) one by one until you reach the statement. Then use the LEFT and
RIGHT arrow keys or mouse to move around within the statement in order to
make the desired changes. Press ENTER to execute the statement again.

Splitting a statement over two lines – When you want to continue a statement
on the next line, you can delay execution by pressing Shift-ENTER rather than
ENTER. For example, you would need to press Shift-ENTER after the first line
below and ENTER after the second line.

 System.out.println

4-4

 ("i = " + i + " and x = " + x);
Shift-ENTER

ENTER

If you simply press ENTER at the end of the first line, Interactions will attempt
to execute the incomplete statement and you will get an error message. Below is
the result you should see after the statements above are entered with delayed
execution.

Ï¼«ÏSystem.out.println
ÏÏ©Ï("i = " + i + " and x = " + x);
ÏÏÏÏi = 10 and x = 22.89

Compound statements – When entering statements such as if, if-else,
while, for, and block statements {}, execution is delayed until the “normal”
end of the statement is reached. To enter the following while statement on two
lines, you can press ENTER at the end of the each line (i.e., there is no need to
press SHIFT-ENTER after the first line).

Ï¼«Ïwhile (i > 0)
ÏÏ©Ïi = i - 1;

Interactions (1.8.7) 9/2/2009

Copying Interactions – After you have entered one or more statements in
Interactions, you may find it useful to copy and then paste them back into
Interactions in order to execute them again or perhaps paste them into a CSD
window to make them part of a program. To copy statements, first use the
mouse to select the range of statements. Next, right-click the mouse to bring up
the context menu and then select “Copy Interactions Code” as shown in Figure
4-3. When you do the “paste”, it will not include the “x” that was output when
System.out.println("x"); was executed.

Figure 4-3. Selecting and copying interactions

4-5

Interactions (1.8.7) 9/2/2009

Viewers – Now let’s take a quick side trip and open viewers on i and x to
explore their details. The easiest way to open a viewer on a variable is to simply
drag it from the Workbench (i.e., left-click on the item and while holding down
on the button, “drag” the item and release the mouse anywhere). Alternatively,
you can open a viewer by right-clicking on the item and then selecting “View by
Name.”

Figures 4-4 and 4-5 show viewers for each of i and x. Note that Viewer is set
to Basic. This is similar to the view in the Workbench.

Figure 4-4. Viewer (Basic) of i Figure 4-5. Viewer (Basic) of x

Using the drop-down menu on the viewer, we can change the setting for Viewer
from Basic to Detail. Figure 4-6 shows the Detail view for i with its value in
decimal, hexadecimal, octal, and binary. If you change Viewer to Detail in the
viewer for x, you will see the IEEE floating point representation (sign, exponent,
and mantissa) for its value as well as the details for how the computation was
done. See Figure 4-7.

4-6

Figure 4-6. Viewer (Detail) of i

Change Viewer from
Basic to Detail

Interactions (1.8.7) 9/2/2009

Figure 4-7. Viewer (Detail) of x

Exploring the increment operator – Many beginning programmers find the
increment and decrement operators confusing. We finish up this section by
taking a look at the two forms of the increment operator. Let’s enter the
following expressions and observe the result returned in Interactions versus the
result shown on the Workbench or in the viewer.

++i
 i++
The difference between these two expressions is significant. If you do not see a
difference at first, enter each expression again (use UP arrow) and carefully
observe the result in Interactions and the result on the Workbench. If you still
do not see the difference, see the explanation below.

++i and i++

++i : the ++ before the i causes i to be incremented by 1
and the new value to be used in the expression. Thus, the
value in Interactions will match the value on the Workbench.

i++ : the ++ after the i causes the current value of i to be
used in the expression and then i is incremented by 1. Thus,
the value in Interactions will be the old value, and the value
on the Workbench will be the new incremented value.

4-7

Interactions (1.8.7) 9/2/2009

4.3 Interactions with Reference Types

Now let’s enter statements in Interactions that involve reference types and
instances of objects and primitive types. We begin by entering a statement that
declares a reference s1 of type String and assigns a String literal to it.

 String s1 = "Interactions are fun";
After ENTER is pressed, you should see an instance of String called s1 on the
Workbench.

Now let’s enter a statement that declares an integer variable len and sets its
value by invoking the length() method on s1.

 int len = s1.length();
After ENTER is pressed, you should see len on the Workbench with a value of
20 as shown in Figure 4-9. Notice the difference in the notation used for the
reference variable s1 versus the primitive variable len. We see that s1
is “pointing to” an object of type String whereas len is an int whose value is
simply “equal to” 20. This notation is intended to visually remind us that the
underlying representations of primitive and reference variables are quite
different.

Figure 4-9. Interactions with results on the Workbench

4-8

Interactions (1.8.7) 9/2/2009

Import statements in interactions work in the same way they do in a Java
program. For example, to create an instance of the Scanner class, we could
enter the following import statement at some point during the Interactions
session prior to entering a statement that references the Scanner. Suppose we
want to use the Scanner class to input a double and assign it to the variable y.
Let’s enter the four statements below.

 import java.util.Scanner;
 Scanner scan = new Scanner(System.in);
 double y;
 y = scan.nextDouble()

When the last statement is entered and executed to read in a double, an input box
is opened in Interactions to allow you to enter the value. Figure 4-10 shows the
desktop after 23.7 has been entered in the input box but before ENTER has been
pressed. When ENTER is pressed, the input box will disappear, and y will be
updated on the Workbench.

Figure 4-10. Interactions to input and assign a double

4-9

Interactions (1.8.7) 9/2/2009

4-10

4.4 Interactions with Your Own Classes

If you want to reference one or more of your own classes in Interactions, the
classes need to be visible from Interactions. The easiest way to accomplish this
is to open the file containing the class. If you start Interactions while the file has
focus (assuming it has been compiled), this class as well as others in the same
directory will be available to Interactions. Your file has focus if it is underlined
in the Browse tab and/or on the window bar. The name of the file in focus will
also be displayed in the title of the jGRASP desktop. If your class is not
recognized in Interactions, click the END button and try it again, making sure
your file has focus.

4.5 Working with Reference Types – Important Details

Performing interactions with reference types and instances of objects is similar
to working with primitives. That is, after you enter a statement or expression, it
is executed/evaluated when you press ENTER. The only significant difference
is that while primitives are always available, you must ensure that any class
which you are referencing is available to Interactions.

If you want to reference one of your own classes that you have opened in a CSD
window, you should start Interactions after the file as been opened and while it
has focus. Your file has focus if it is underlined in Browse tab and on the
window bar, and it is displayed in the title of the jGRASP desktop. If
Interactions does not recognize your class, click the END button and try it again,
making sure your file has focus. When you start Interactions, all classes in the
same directory as the file with focus will also be available to Interactions.

4.6 Interactions with the Debugger

When variables are declared in Interactions they are placed on the Workbench as
seen in the examples above. You can also interact with variables in the Debug
tab. When you run your program in debug mode and the program stops at a
breakpoint, the Debug tab will contain the variables that have been declared and
initialized. You can enter statements and expressions in Interactions that use
these variables. That is, the variables in the Debug tab are available to
Interactions. You may find this useful in debugging. For example, to find the
length of the 10,000th element in an array of Strings named stringArray, you
could simply enter stringArray[10000].length() in Interactions.

	4 Interactions
	4.1 Starting Interactions
	4.2 Interactions with Primitives
	4.3 Interactions with Reference Types
	4.4 Interactions with Your Own Classes
	4.5 Working with Reference Types – Important Details
	4.6 Interactions with the Debugger

