
Getting Started with Objects (1.8.7) 9/2/2009

 3-1

3 Getting Started with Objects
If you are an experienced IDE user, you may be able to do this tutorial without
having done the previous tutorial, Getting Started. However, at some point you
should read the previous tutorial and make sure you can do the exercises at the
end. The topics presented in this tutorial are applicable to Java.

Objectives – When you have completed this tutorial, you should be able to use
projects, UML class diagrams, the Object Workbench, Viewers, and Interactions
in jGRASP. These topics are especially relevant for an objects first or objects
early approach to learning Java.

The details of these objectives are captured in the hyperlinked topics listed
below.

3.1 Starting jGRASP
3.2 Navigating to Our First Example Project
3.3 Opening a Project and UML Window
3.4 Compiling and Running the Program from UML Window
3.5 Exploring the UML Window
3.6 Viewing the Source Code in the CSD Window
3.7 Exploring the Features of the UML and CSD Windows
3.8 Generating Documentation for the Project
3.9 Using the Object Workbench
3.10 Opening a Viewer Window
3.11 Invoking a Method
3.12 Invoking Methods with Parameters That Are Objects
3.13 Invoking Methods on Object Fields
3.14 Showing Categories of Methods
3.15 Creating Objects from the CSD Window
3.16 Using Interactions
3.17 Running the Debugger on Invoked Methods
3.18 Creating an Instance from the Java Class Libraries
3.19 Exiting the Workbench
3.20 Closing a Project
3.21 Exiting jGRASP
3.22 Review of Toolbar Buttons
3.23 Exercises

Getting Started with Objects (1.8.7) 9/2/2009

3.1 Starting jGRASP
A Java program consists of one or more class files. During the execution of the
program, object instances can be created and then manipulated toward some
useful purpose by invoking the methods provided by their respective classes. In
this tutorial, we’ll examine a simple program called PersonalLibrary that
consists of five Java classes. In jGRASP, these five Java files are organized as a
project.

jGRASP

 If you are working in a Microsoft Windows environment, you can
start jGRASP by double clicking its icon on your Windows desktop.
If you are working on a PC in a computer lab and you do not see the
jGRASP icon on the desktop, try the following: click Start > All

Programs > jGRASP (folder) > jGRASP. Depending on the speed of your
computer, jGRASP may take between 10 and 30 seconds to start up. The
jGRASP virtual Desktop, shown below, is composed of a Control Panel with a
menu across the top and three panes. The left pane has tabs for Browse, Find,

Browse
Tab Pane

CSD and UML
Windows

To Resize Pane, Select
and Drag Partition or
Click Arrowheads to

open or close

Messages,
Run I/O, and
Interactions

Tab Pane

Figure 3-1. The jGRASP Virtual Desktop

 3-2

Getting Started with Objects (1.8.7) 9/2/2009

Debug, and Workbench. The large right pane is for UML and CSD windows.
The lower pane has tabs for jGRASP messages, Compile messages, Run
Input/Output, and Interactions.

3.2 Navigating to Our First Example Project

Example programs are available in the jGRASP folder in the directory where it
was installed (e.g., C:\Program Files\jGRASP\examples\Tutorials). You should
copy the Tutorials folder to one of your own folders (e.g., in your My
Documents folder) so that any changes you make will not be lost when jGRASP
is upgraded.

The files shown initially in the Browse tab will most likely be in your home
directory. You can navigate to the appropriate directory by double-clicking on a
folder in the Browse tab or by clicking on the up-arrow as indicated in the figure
below. The left-arrow and right-arrow allow you to navigate back and forward
to directories that have already been visited during the session. The refresh
button updates the Browse pane. In the example below, the Browse tab is
displaying the contents of the Tutorials folder.

Figure 3-2. The jGRASP Virtual Desktop

To move up in the directory click on

To open a folder
double-click on the folder

To open a file
double-click on the Java

source file name

 3-3

Getting Started with Objects (1.8.7) 9/2/2009

3.3 Opening a Project and UML Window

After double-clicking the PersonalLibraryProject folder, the Java source files in
the project as well as the jGRASP project file are displayed in the Browse tab.
Double-click on the project file (PersonalLibraryProject.gpj) to open the project
as shown in Step 1 below. After the project is opened, the Browse tab is split
into two sections, the upper section for files and the lower section for open
projects, as shown below in Figure 3-3.

We are now ready to open a UML window and generate the class diagram for
the project. As indicated in Step 2 below, simply double-click on the UML
symbol shown beneath the project name in the open projects section of the
Browse tab. Alternatively, on the desktop menu you can click Project >
Generate/Update UML Class Diagram.

After you have opened the UML window, you can compile and run your
program in the traditional way using the toolbar buttons or the Build menu.
However, from an objects first perspective, you can also create objects directly
from your classes, place them on the Workbench, and then invoke their
methods. Both of these approaches are explored below.

Figure 3-3. Opening a project file and UML window

Step 1. Open Project
Double-click project file name

Step 2. Open UML Window
Double-click UML symbol

 3-4

Getting Started with Objects (1.8.7) 9/2/2009

3.4 Compiling and Running the Program from UML Window
You can compile the files in the UML window by clicking the green plus as
indicated in Step 3 below. Note that the classes in the UML diagram become
crosshatched with red lines when they need to be recompiled. After a successful
compile, the classes should be green again. If at least one the classes in the
diagram has a main method, you can also run the program by clicking the Run
button as shown by Step 4. When you compile or run the program, the
respective Compile Messages or Run I/O tab pops open in the lower pane to
show the results.

TIP: Usually the reason for compiling a program is because you have modified
or “added” something, hence the green plus .

 3-5

Figure 3-4. After loading file into CSD Window

Step 3. Compile program

Step 4. Run program

Getting Started with Objects (1.8.7) 9/2/2009

3.5 Exploring the UML Window
In the Figure 3-5, a UML window for the PersonalLibraryProject has been
opened and the class diagram has been generated. Below the toolbar is a
panning rectangle which can be used to move around in the UML diagram. A
set of scaling buttons is located to the right of the panning rectangle. Try
clicking each of the scaling buttons one or more times to see the effect on the
UML diagram. Clicking “1” resets the diagram to its original size. The Update
UML button on the toolbar can be used to regenerate the diagram in the event
any of the classes in the project are modified outside of jGRASP (e.g., edited or
compiled). Just below the UML window is the windowbar which contains a
button for each UML or CSD window that is opened. Clicking the button pops
its window to the top. Windowbar buttons can be reordered by dragging them
around on the windowbar.

 Windowbar Update UML Panning Rectangle Scaling Buttons

 3-6

Figure 3-5. UML window with PersonalLibraryPorject

Getting Started with Objects (1.8.7) 9/2/2009

3.6 Viewing the Source Code in the CSD Window

To view the source code for a class in the UML diagram, simply double-click on
the class symbol, or in the Browse tab, double-click the file name in the Files or
Open Projects sections. Each of these will open the Java file in a CSD window,
which is a full-featured editor for entering and updating your program. Notice
that with the CSD window open the toolbar buttons now include Generate CSD,
Remove CSD, Number Lines, Compile, and Run, as well as buttons for Create
Instance and Invoke Method.

Generate a CSD

 Remove CSD Compile Create Instance

 Number Lines (on/off) Run Invoke Method

 3-7

 Generate UML

Figure 3-6. After the CSD is generated

Getting Started with Objects (1.8.7) 9/2/2009

 3-8

3.7 Exploring the Features of the UML and CSD Windows
Once you have a UML window open with your class diagram, you are ready to
do some exploring. The steps below are intended to give you a semi-guided tour
of some of the features available from the UML and CSD windows.

3.7.1 Viewing the source code for a class

(1) In the UML diagram, double-click on the PersonalLibrary class. This
should open the source file in a CSD window. Notice a button for this CSD
window is added to the windowbar. You should also see a button for the
UML window.

(2) Review the source code in the CSD window; generate the CSD; fold and
unfold the CSD; turn line numbers on and off. [See Sections 2.7 - 2.9 in
Getting Started for details.]

(3) On the windowbar, click the button for the UML window to pop it to the
top. Remember to do this anytime you need to view the UML window.

(4) View the source code for the other classes by: (1) double-clicking on the
class in the UML diagram, (2) double-clicking on the class in the Open
Projects section of the Browse tab, or (3) double-clicking on the file name
in the upper section of the Browse tab.

(5) Close one or more of the CSD windows by clicking the X in the upper right
corner of the CSD window.

3.7.2 Displaying class information

(1) In the UML window, select the Fiction class by left-clicking on it.

(2) Right-click on it and select Show Class Info. This should pop the UML
Info tab to the top in the left pane of the Desktop, and you should be able to
see the fields, constructors, and methods of the Fiction class.

(3) In the UML Info tab, double-click on the getMainCharacter() method. This
should open a CSD window with the first executable line in the method
highlighted.

(4) Close the CSD window by clicking the X in the upper right corner.

3.7.3 Displaying Dependency Information

(1) In the UML window, select the arrow between PersonalLibrary and Fiction
by left-clicking on it.

(2) If the UML Info tab is not showing in the left pane of the desktop, right-
click on the arrow and select Show Dependency Info. Alternatively, you
can click the UML Info tab near the bottom of the left pane.

Getting Started with Objects (1.8.7) 9/2/2009

(3) Review the information listed in the UML tab. As the arrow in the diagram
indicates, PersonalLibrary uses a constructor from Fiction as well as the
getMainCharacter() method.

(4) Double-click on the getMainCharacter method. This should open a CSD
window for PersonalLibrary with the line highlighted where the method is
invoked.

3.8 Generating Documentation for the Project

With your Java files organized as a project, you have the option to generate
project level documentation for your Java source code in a standard format. To
begin the process of generating the documentation, click Project > Generate
Documentation. Alternatively, if the UML window is in focus, click the
Generate Documentation button on the toolbar. This will bring up the
“Generate Documentation for Project” dialog, which asks for the directory
where the generated HTML files are to be stored. The default directory name is
the name of the project with “_doc” appended to it. Thus, for the example, the
default will be PersonalLibaryProject_doc. Using the default name is
recommended so that your documentation directories will have a standard
naming convention. However, you are free to use any directory as the target.
Pressing the Default button will get you back to the default directory in the
event a different directory is listed. When you click Generate on the dialog,
jGRASP calls the javadoc utility, included with the JDK, to create a complete
hyper-linked document. The documentation is then opened in a Documentation
Viewer as shown below for PersonalLibaryProject.

Figure 3-7. After generating documentation for PersonalLibaryProject

 3-9

Getting Started with Objects (1.8.7) 9/2/2009

3.9 Using the Object Workbench
Now we are ready to begin exploring the Object Workbench. The figure below
shows the UML window opened for the PersonalLibraryProject. Earlier, we
learned how to run the program as an application using the Run button .
Since main is a static method, we can also invoke it directly from the class
diagram by right-clicking on PersonalLibary and selecting Invoke Method.
Alternatively, you can select the PersonalLibrary class, and then click the
Invoke Method button on the toolbar. When the Invoke Method dialog pops
up, select and invoke main (without parameters). Try this now.

Figure 3-8. Creating an Object for the Workbench

The focus of this and the next several sections is on creating objects and placing
them on the workbench. We begin by right clicking on the Fiction class in the
UML diagram, and then selecting Create New Instance, as shown in Figure 3-
8. Alternatively, select the Fiction class, and then click the Create Instance
button on the toolbar. A list of constructors will be displayed in a dialog
box.

 3-10

Getting Started with Objects (1.8.7) 9/2/2009

Figure 3-9. Selecting a
constructor

Click on “stick-pin”
to keep dialog open.

 3-11

If a parameterless constructor is selected
as shown in Figure 3-9, then clicking
Create will immediately place the object
on the workbench. However, if the
constructor requires parameters, the
dialog will expand to display the
individual parameters as shown in
Figure 3-10. The values for the
parameters should be filled in prior to
clicking Create. Be sure to enclose
strings in double quotes. In either case,
the user can set the name of the object
being constructed or accept the default
assigned by jGRASP. Also, the “stick-
pin” located in the upper left of the
dialog can be used to make the Create
dialog remain open. This is convenient
for creating multiple instances of the
same class. If the project documentation
has been generated, clicking the Show
Doc button on the dialog will display the
documentation for the constructor
selected.

Figure 3-10. Constructor with
parameters

In Figure 3-11, the Workbench tab is
shown after two instances of Fiction and
one of Novel have been created. The

Getting Started with Objects (1.8.7) 9/2/2009

second object, fiction_2, has been expanded so that the fields (mainCharacter,
author, title, and pages) can be viewed. An object can be expanded or
contracted by clicking on its name. Notice that three fields in fiction_2 are also
objects (i.e., instances of the String class); they too can be expanded.

Notice that objects and object fields have various shapes and colors associated
with them. Objects are represented by squares and primitives are represented by
triangles. Top level objects are indicated by blue square symbols (e.g.,
fiction_2). The symbols for fields declared in an object are either a square for
an object (e.g., author) or a triangle for a primitive type (e.g., pages). A green
symbol indicates the field is declared within the class (e.g., mainCharacter in
fiction_2), and an orange symbol means the field was declared in a superclass
(e.g., author was declared in Book). A red bar on a symbol means the field is
inaccessible from its current context; the object was declared as either private or
protected (e.g., mainCharacter). A gray bar indicates the field is not visible and
that a cast would be required to refer to it. Finally, a red-gray bar means the
field is inaccessible and not visible. These colors/bars also apply to methods.

Figure 3-11. Workbench with three Fiction objects
 3-12

Getting Started with Objects (1.8.7) 9/2/2009

3.10 Opening a Viewer Window
A separate Viewer window can
be opened for any object or field
of an object in the Workbench
or Debug tabs. To open a
viewer, left-click on an object in
the Workbench tab and while
holding down the left mouse
button, drag it from the
workbench to the location where
you want the viewer to open.
When you start to drag the
object, a viewer symbol should
appear to indicate a viewer is being opened. At a minimum, a viewer provides
the basic view similar to the one in the Workbench and Debug tabs. However,
some objects will have additional views. For example, the viewer for a String
object will display its text value fully formatted. Figure 3-12 shows a viewer on
the mainCharacter field in fiction_2.

Figure 3-12. Viewer on
fiction_2.mainCharacter

Figure 3-13 shows a viewer opened for Basic view on the “pages” field of
fiction_2, which is an int
primitive type. Figure 3-14
shows the viewer set to Detail
view, which shows the value of
pages in decimal, hexadecimal,
octal, and binary. The Detail
view for float and double values
shows the internal exponent and
mantissa representation used for
floating point numbers. Note
that the last view selected will
be used the next time a Viewer
is opened on the same class or
type. Special presentation
views are provided for instances
of array, ArrayList, LinkedList,
HashMap, and TreeMap. When
running in Debug mode, a
viewer can also be opened on
any variable in the Debug tab.

Figure 3-13 Viewer with Basic View of
Primitive int

Figure 3-14 Viewer with Detail View of
Primitive int

 3-13

Select view from
drop-down list.

Getting Started with Objects (1.8.7) 9/2/2009

Note that the viewer in Figure 3-12, which contains an object, has an Invoke
Method button ; however the viewers for the ints in Figures 3-13 and 3-14 do
not since primitives have no methods associated with them.

3.11 Invoking a Method
To invoke a method on an object in a viewer (see Figure 3-12), click the Invoke
Method button . To invoke a method for an object on the workbench, select
the object, right click, and then select Invoke Method. In Figure 3-15, fiction_2
has been selected, followed by a right mouse click, and then Invoke Method has
been selected. A list of visible user methods will be displayed in a dialog box as
shown in Figure 3-16. You can also display all visible methods by selecting the
appropriate option. After one of the methods is selected and the parameters
filled in as necessary, click Invoke. This will execute the method and display
the return value (or void) in a dialog, as well as display any output in the usual
way. If the method updates a field (e.g., setMainCharacter()), the effect of the
invocation is seen in appropriate object field in the Workbench tab. The “stick-
pin” located in the upper left of the dialog can be used to make the Invoke
Method dialog remain open. This is useful when invoking multiple methods for
the same object. The Show Doc button will be enabled if documentation has

Figure 3-15. Workbench with two instances of Fiction
 3-14

Getting Started with Objects (1.8.7) 9/2/2009

been generated for the project.

Figure 3-16. Selecting a method

As indicated above, perhaps one of the most compelling reasons for using the
workbench approach is that it allows the user to create an object and invoke each
of its methods in isolation. Thus, with an instance of Fiction on the workbench,
each of its four methods: getMainCharacter(), setMainCharacter(), toString(),
and compareTo() can be invoked directly. By carefully reviewing the results of
the method invocations, we can informally test the class without the need for a
driver with a main() method.

3.12 Invoking Methods with Parameters That Are Objects

In the example above, we created three instances of Fiction. Instances of any
class in the UML diagram can be created and placed on the workbench. If the
constructor requires parameters that are primitive types and/or strings, these can
be entered directly, with any strings enclosed in double quotes. However, if a
parameter requires an object, then you must create an object instance on the
workbench first. Then you can simply drag the object from the workbench to
the parameter field in the Invoke Method dialog. You can also use the new
operator to create an instance when entering the value of a parameter.

 3-15

Getting Started with Objects (1.8.7) 9/2/2009

3.13 Invoking Methods on Object Fields
If you have an object in the Workbench tab pane, you can expand it to reveal its
fields. Recall, in Figure 3-11, fiction_2 had been expanded to show its fields
(mainCharacter, author, title, pages, and mainCharacter). Since the field
mainCharacter is itself an object of the String class, you can invoke any of the
String methods. For example, right-click on mainCharacter and select Invoke
Method. When the dialog pops up (Figure 3-17), scroll down and select the
first toUpperCase() method and click Invoke. This should pop up the Result
dialog with “ROBERT LANGDON” as the return value (Figure 3-18). This
method call has no effect on the value of the field for which it was called; it
simply returns the string value converted to uppercase.

Figure 3-18. Result of
fiction_2. mainCharacter.toUpperCase()

Figure 3-17. Invoking a toUpperCase() method on
fiction_2.mainCharacter

 3-16

Getting Started with Objects (1.8.7) 9/2/2009

3.14 Showing Categories of Methods

The methods shown in the Invoke Method dialog based on the category selected
in the “Show:” field. The “Show: Default” category includes the methods
declared in the object’s class and all of its superclasses except the Object class.
A number of other useful categories are also available in the dialog. For
example, Figure 3-19 shows the “Delcared in java.lang.Object” category
selected for fiction_2. These are the methods that fiction_2 inherited from the
Object class. The orange color coding of the method symbols indicates
“inherited” methods. Notice that a toString() method was declared in the Object
class and that it has gray bar on the orange method symbol indicating that the
method is not visible. Since Fiction has its own toString() method, it is
overriding the inherited method. If you invoke the one declared in Object, the
rules of Java are such that the one declared in Fiction is actually executed.
However, jGRASP allows you to invoke Object’s version by turning on (check
box) Invoke Non-virtual. To view categories of methods, click the Show drop-
down list on the dialog as indicated below.

 3-17

Figure 3-19. Showing methods declared in
java.lang.Object

To view another category of
methods, click here

Getting Started with Objects (1.8.7) 9/2/2009

3.15 Creating Objects from the CSD Window

In addition to creating instances of classes from the UML class diagram,
instances can be created directly from the CSD window after the class has been
compiled. Figure 3-20 shows a CSD window containing class Fiction. From
the menu, select Build > Java Workbench > Create New Instance. Buttons
are also available on the toolbar for Create New Instance and Invoke Static
Method (remember that only static methods can be invoked from a class).
You can always create instances from the CSD window even if you have not
created a project and UML diagram. This makes it convenient to quickly create
an instance for the workbench and then invoke its methods.

 3-18

Figure 3-20. Creating an Instance from the CSD Window

Click to invoke a static method.
Note that Fiction has no static methods;
try this with PersonalLibrary and you
should see main in the list).

Click to create an
instance of the class in
the CSD window.

Getting Started with Objects (1.8.7) 9/2/2009

3.16 Using Interactions

The Interactions tab, located next to the Run I/O tab in the lower window of
the desktop, allows you to enter most Java statements and expressions and then
execute or evaluate them immediately when you press ENTER. Interactions
provide a convenient interface for working with items in the workbench or
debug tabs. In fact, when you enter code that creates an object or primitive, the
item is placed on the workbench where it can be inspected by unfolding and/or
opening a viewer on it. Interactions can be especially helpful when learning and
experimenting with objects and other elements in the Java language.

Consider Figure 3-21 where the context for Interactions is the UML window for
the PersonalLibraryProject. Typing the following statement and pressing
ENTER creates an instance of Novel on the workbench.

 Novel n = new Novel();

Figure 3-21. Using Iteractions

 With n on the workbench, we can now type statements or expressions that
reference n and have them executed or evaluated immediately when ENTER is
pressed. For example, typing n (followed by ENTER) is an expression that
evaluates to the value of n, which is the Novel that was just created. For object

 3-19

Getting Started with Objects (1.8.7) 9/2/2009

values, the result of invoking toString() on the object is displayed, as shown in
Figure 3-22.

Figure 3-22. Entering and evaluating the expression n

When working with Interactions, mistakes will generate messages similar to
those from the compiler. To correct a statement without retyping it, use the UP
and DOWN arrow keys to scroll through the previous statements (history) one
by one until you find it. Then use the LEFT and RIGHT arrow keys or mouse to
move around within the statement in order to make the desired changes. Finally,
press ENTER to execute the statement again.

When you want to continue a statement on the next line, you can delay
execution by pressing Shift-ENTER rather than ENTER. For example, you
would need to press Shift-ENTER after the first line below and ENTER after the
second line.

 System.out.println

 3-20

 ("The current value of n:" + n);
Shift-ENTER

ENTER

If you simply press the ENTER at the end of the after the first line, Interactions
will attempt to execute the incomplete statement and you get an error message.

Getting Started with Objects (1.8.7) 9/2/2009

Interactions in jGRASP can be a very useful tool, especially when learning new
features, and you are encouraged to experiment with it.

3.17 Running the Debugger on Invoked Methods

When objects are on the workbench, the workbench is actually running Java in
debug mode to facilitate the workbench operations. Thus, if you open a class in
the CSD window and set a breakpoint in a method and then invoke the method
from the workbench, the CSD window will pop to the top when the breakpoint
is reached. When this occurs, you can single step through the program,
examining variables in the Debug tab or you can open a separate viewer for a
particular variable as described above in Section 3-10. See the Tutorial entitled
“The Integrated Debugger” for more details.

3.18 Creating an Instance from the Java Class Libraries
You can create an instance of any class that is available
to your program, which includes the Java class
libraries. Find the Workbench menu at the top of the
UML window. Click Workbench > Create New
Instance of Class. In the dialog that pops up (Figure
3-23), enter the name of a class such as java.lang.String
or select a class from the drop-down list, and click OK.
This should pop up a dialog containing the constructors
for String. Select an appropriate constructor, enter the
argument(s), and click Create. This places the instance
of the class on the workbench where you can invoke
any of its methods as described earlier.

Figure 3-23.
Creating an
instance of String

3.19 Exiting the Workbench

The workbench is running
whenever you have objects on
it or if you have invoked
main() directly from the class
diagram. If you attempt to do
an operation that conflicts
with workbench, such as
compiling a class, jGRASP
will prompt you with a
message indicating that the workbench is active and ask you if it is OK to end
the Workbench (see Figure 3-24). The prompt is to let you know that the
operation you are about to perform will clear the workbench. You can also clear
or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

Figure 3-24. Making sure it is okay to exit
the Workbench

 3-21

Getting Started with Objects (1.8.7) 9/2/2009

3.20 Closing a Project
If you leave one or more projects open when you exit jGRASP, they will be
opened again when you restart jGRASP. You should close any projects you are
not using to reduce clutter in the Open Projects section of the Browse tab.

Here are two ways to close a project:

(1) From the Desktop menu – Click Project > Close or Close All Projects.

(2) In the Open Projects section of the Browse tab – Right-click on the project
name and select Close or Close All Projects.

All project information is saved when you close the project as well as when you
exit jGRASP.

3.21 Exiting jGRASP

When you have completed your session with jGRASP, you should “exit” (or
close) jGRASP rather than leaving it open for Windows to close when you log
out or shut down your computer. When you exit jGRASP, it saves its current
state and closes all open files. If a file was edited during the session, it prompts
you to save or discard the changes. The next time you start jGRASP, it will
open your files, and you will be ready to begin where you left off.

Close jGRASP in either of the following ways:

(1) Click the Close button in the upper right corner of the
desktop; or

(2) On the File menu, click File > Exit jGRASP.

When you try to exit jGRASP while a process such as the workbench is still
running, you will be prompted (Figure 3-25) to make sure it is okay to quit
jGRASP.

Figure 3-25. Making sure it is okay to
exit jGRASP

 3-22

Getting Started with Objects (1.8.7) 9/2/2009

3.22 Review of Toolbar Buttons

Figure 3-26 provides a review of the buttons on the jGRASP toolbar. If you
forget the function of a button, simply move the mouse over it to display the tool
hint.

 TIP: Right-click here to
turn menu groups on or off. Open File

 3-23

 Save File

 Set Browse Tab to directory of current file

 Print Cut Copy Paste Undo last edit

 Generate CSD Remove CSD Toggle Line Number Freeze line numbers

 Generate CPG Generate UML Generate Documentation

 Compile Run Debug Run Debug Create Invoke
 Applet Applet Object Static

Method
 Figure 3-26. Toolbar

Getting Started with Objects (1.8.7) 9/2/2009

3.23 Exercises

(1) Create a new project (Project > New) named PersonalLibraryProject2 in
the same directory folder as the original PersonalLibraryProject. During
the create step, add the file Book.java to the new project.

a. After the new project is created, add the other Java files in the
directory to the project. Do this by dragging each file from the
Files section of the Browse tab and dropping it in
PersonalLibraryProject2 in the open projects section.

a. Remove a file from PersonalLibraryProject2. After verifying the
file was removed, add it back to the project.

(2) Generate the documentation for PersonalLibraryProject2, using the
default name for the documentation folder. After the Documentation
Viewer pops up:

a. Click the Fiction class link in the API (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.

(3) Close the project.

(4) Open the project by double-clicking on the project file in the files section of
the Browse tab.

(5) Generate the UML class diagram for the project.

a. Display the class information for each class.

b. Display the dependency information between two classes by
selecting the appropriate arrow.

c. Compile and run the program using the buttons on the
toolbar.

d. Invoke main() directly from the class diagram.

e. Create three instances of Fiction from the class diagram. Open
Novel in a CSD window, then create two instances of Novel from
the CSD window

f. Invoke some of the methods for one or more of these instances.

g. Open an object viewer for one or more String fields of one of the
instances.

(6) Use Interactions to enter statements and expressions that reference items on
the workbench. Create new objects by entering statements such as:

 3-24

Getting Started with Objects (1.8.7) 9/2/2009

 Novel myNovel = new Novel();

(7) Open the CSD window for PersonalLibrary.java.

a. Set a breakpoint on the first executable statement.

b. From the UML window, start the debugger by clicking the Debug
button.

c. Step through the program, watching the objects appear in the
Debug tab as they are created.

d. Restart the debugger. This time click “step in” instead of “step”.
This should take you into the constructors, etc.

(8) If you have other Java programs available, repeat the steps above for each
program.

 3-25

Getting Started with Objects (1.8.7) 9/2/2009

 3-26

Notes

	3 Getting Started with Objects
	3.1 Starting jGRASP
	3.2 Navigating to Our First Example Project
	3.3 Opening a Project and UML Window
	3.4 Compiling and Running the Program from UML Window
	3.5 Exploring the UML Window
	3.6 Viewing the Source Code in the CSD Window
	3.7 Exploring the Features of the UML and CSD Windows
	3.7.1 Viewing the source code for a class
	3.7.2 Displaying class information
	3.7.3 Displaying Dependency Information

	3.8 Generating Documentation for the Project
	3.9 Using the Object Workbench
	3.10 Opening a Viewer Window
	3.11 Invoking a Method
	3.12 Invoking Methods with Parameters That Are Objects
	3.13 Invoking Methods on Object Fields
	3.14 Showing Categories of Methods
	3.15 Creating Objects from the CSD Window
	3.16 Using Interactions
	3.17 Running the Debugger on Invoked Methods
	3.18 Creating an Instance from the Java Class Libraries
	3.19 Exiting the Workbench
	3.20 Closing a Project
	3.21 Exiting jGRASP
	3.22 Review of Toolbar Buttons
	3.23 Exercises

