

 An Extensible Framework for Providing Dynamic
Data Structure Visualizations in a Lightweight IDE

T. Dean Hendrix, James H. Cross II, and Larry A. Barowski
Computer Science and Software Engineering

Auburn University, AL 36849
hendrix | cross | larrybar@eng.auburn.edu

ABSTRACT
A framework for producing dynamic data structure visualizations
within the context of a lightweight IDE is described. Multiple
synchronized visualizations of a data structure can be created with
minimal coding through the use of an external viewer model. The
framework supplies a customizable viewer template as well as
high-level APIs to a graph drawing library and the Java Debugger
Interface. Initial classroom use has demonstrated the framework’s
ease of use as well as its potential to as an aid to student learning.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, interactive
environments.

General Terms
Documentation, Experimentation, Human Factors.

Keywords
Program Visualization, Algorithm Animation, Data Structures.

1. INTRODUCTION
Software visualizations have long been at the center of efforts to
provide effective learning tools for computing curricula. Although
many have been shown to be effective pedagogically, they are not
widely adopted. The reasons include: (1) lack of suitable
automatic generation of the visualizations; (2) lack of integration
among visualizations (e.g., navigation among multiple
visualizations of the same software artifact); and (3) lack of
integration with basic IDE support (e.g., linking the development
environment with the visualization environment). To obtain the
full benefit of visualizations when developing code, it is useful to
automatically generate multiple synchronized views without
leaving the IDE. For example, when implementing or using a data
structure such as a red-black tree, appropriate views may include
control structure, class structure, and a dynamic visualization of
the tree itself, all of which have been shown in the literature to be
effective.
In the latest version of the jGRASP environment under
development (1.7.0 alpha), an extensible framework for

automatically generating dynamic data structure visualizations has
been added. This framework provides users with the ability to
create multiple graphical views of data structures, which are
synchronized, automatically generated, and updated as a program
executes. Initial classroom experience with the data structure
visualization framework has been very positive. Dynamic
visualizations of data structures such as linked lists, heaps, and
red-black trees have been produced in a matter of minutes and
seamlessly integrated into the classroom lecture. Students are able
to watch a red-black tree grow, shrink, and change colors as a
program is stepped through and explained during class. While
controlled experiments have not yet been performed to quantify
the effect, if any, that these visualizations have on student
learning, the anecdotal evidence collected to date is very
encouraging.

2. BACKGROUND AND CONTEXT
The extant software visualization research has primarily been
directed toward two main areas of interest: (1) program
visualization, in which source code, data structures, or runtime
behavior is represented, and (2) algorithm animation, in which
views are provided of conceptual behavior at the algorithmic
rather than the implementation level [10]. Our work overlaps the
boundary between program visualization and algorithm
animation, and draws on the research in both areas. While of
visualizations are automatically generated from a program’s
runtime execution, our primary purpose is to increase the
comprehensibility of the underlying algorithm and the associated
program behavior. Our framework also allows one to create
abstract visualizations that have only conceptual, rather than
physical, relationships to the underlying source code.
Extensive research has been carried out in an effort to understand
the effects that algorithm animations have on learning and
comprehension. Although some results are negative, and many are
conflicting, it has been shown that appropriate animations can be
effective aids to student learning, given the right circumstances.
Narayanan and his students have developed a theoretical
framework for pedagogically effective algorithm visualizations, in
which analogies and animations are embedded within the context
of a knowledge-rich hypermedia environment. HalVis, an
algorithm visualization system based on this framework, was
shown to be superior to both traditional methods of instruction
and algorithm animations representative of extant research in an
extensive series of experiments [6]. These results emphasize the
importance of context in the effectiveness of visualizations. In
subsequent empirical work, computer-supported collaborative
construction and critiquing of algorithm visualizations by students
was also found to lead to superior learning [7]. These results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

387

suggest that well-designed visualizations can indeed enhance
student learning of algorithms. We have applied the results from
this research to the teaching and learning of programming by
integrating visualizations with IDE functionality. Such as
seamless integration of a lightweight IDE with a set of
pedagogically effective software visualizations is unique and is
currently unavailable in any other environment.

3. GENERATING DYNAMIC DATA
STRUCTURE VISUALIZATIONS

From the perspective of a language like Java, data structures such
as linked lists, stacks, queues, and trees are simply objects of
varying degrees of complexity. The current jGRASP integrated
Java debugger and workbench provide an expandable nested view
of objects that gives detailed information about an object and its
fields. Clearly, higher-level views of complex objects would be
useful for both program understanding and debugging. For
example, if an object is conceptually an ordered list implemented
by a tree data structure, it would be helpful to be able see three
levels of abstraction: (1) the low-level expandable view of the
object’s members, (2) the higher level view of the underlying tree
structure, and (3) the top level view as an ordered list. Note that
all of these views can be visible at the same time and all are
dynamic. As the user steps through the program, the views are
updated appropriately (e.g, an element is added).
As an example, consider the Java TreeMap class, which provides

a key-value map that is sorted by key. Figure 1 shows the source
code being executed (1), the low-level object view (2), the tree
view (3), and the high-level sorted-set view (4) of the red-black
tree data structure that is used to maintain the sorting. Figure 2
depicts the final state of the tree view (3) after the program has
completed execution.

Figure 2. Tree View for an instance of java.util.TreeMap

The tree view would be appropriate if the user is interested in
understanding the workings of the red-black tree, or in how the
tree is organized for a particular data set and the effect this has on
efficiency. However, for debugging a program that only uses the
TreeMap for example, the user might be interested in seeing just the
keys and values in their current order. In that case, the sorted set

Figure 1. jGRASP displaying multiple synchro

3

1 2

3 4

1 2

3 4

nized dynamic views of a TreeMap data structure.
88

view (4), which is based on the SortedSet interface that TreeMap
implements and simply lists the keys and values in order, could be
more useful. For some objects, an even higher-level view may be
desired, such as a display of the image for an Image or Icon or a
display of a color swatch for a Color.
The jGRASP integrated Java debugger is used to collect the runtime
information necessary to render the visualizations. Thus, a program
must run in the debugger or from the jGRASP workbench for its
data structures to be visualized.
We use an “external viewer” model for specifying dynamic data
structure visualizations. For each data structure class (e.g.,
java.util.TreeMap) to be visualized, one or more external viewers
must be created. An external viewer is constructed from a simple
class template provided in our framework. The framework has three
parts: (1) a high-level interface wrapping the Java Debugger
Interface; (2) a higher-level interface for FLGL, the graph drawing
library that is a part of jGRASP; and (3) an interface to basic view
components included in the framework (e.g., scrollable tabbed
panes).
The Java Debugger Interface (JDI) is used to access Objects in the
workbench and debugger. Since this interface is quite abstract and
complex for the average user, the framework provides a higher-
level interface. The user is able to access field values, invoke
methods, convert values to strings, or retrieve primitive values using
a single line of code (a method call to a framework object). In order
to relieve the user of the large amount of exception handling that is
necessary in the JDI, exceptions are wrapped in a single exception
type, and these are caught inside jGRASP rather than in user code,
and produce a useful debugging message when caught.
The Flexible Graph Drawing Library (FLGL) (www.jgrasp.org/flgl)
is used in jGRASP for display of UML and for some of the current
object view prototypes. FLGL allows the construction, display, and
layout of graphs. The framework also provides a higher-level API
to access FLGL for the display of data structure diagrams, relieving
the users of the details of the use of FLGL.
In addition to this traditional source code-based API, we anticipate
allowing interactive specification of data structure diagram mapping
using a method similar to the one implemented in Travis [9]. Once
implemented, this will provide students and teachers with an easy-
to-use interactive approach to generating these visualizations at
runtime. Even so, the current source code-based approach is quite
easy to use, particularly for instructors.
As an example, suppose we want to produce a visualization for a
linked list, say java.util.LinkedList. The first step would be to create
an external viewer class from the provided framework template.
This viewer class has a method named ‘update’ that will be called
each time an instance of java.util.LinkedList running in the
debugger is modified. In the update method, we simply specify the
behavior that we want exhibited when the data structure changes
(e.g., update the viewer display to show an added node). Since the
framework provides high-level APIs to the FLGL and the JDI, this
can be done very easily and without any knowledge of graphics,
reflection, or the JDI. The external viewer for LinkedList shown in
Figure 3 and the external viewer for TreeMap each required only 10
to 15 lines of Java code.
Users are free to create visualizations for arbitrary classes, not just
predefined data structures from the Java library. Instructors and
students can create viewers for their own data structures or for those
provided with a textbook.

Figure 3. Viewer for java.util.LinkedList

Figure 4 shows the MaxHeap class from Sartaj Sahni’s CS 2 text
[12] being visualized both at the concrete program level as an array
(in the Object View provided by jGRASP) and at the conceptual
level as a partially ordered binary tree (in the Tree View created by
a user).

Figure 4. Low-level and high-level visualizations of a textbook

MaxHeap class.

389

4. COMPARISON TO RELATED WORK
4.1 General Purpose Software and Algorithm
Animation Systems
Balsa and Zeus [2] are examples of early algorithm animation
systems that were highly influential. Users of these systems create
visualizations by inserting calls to the animation system directly
into the source code being visualized. Tango and its successor
POLKA [14] were based on this work. Tango and POLKA
pioneered the “interesting events” model of producing algorithm
animations via annotated source code. An interesting event
denotes a point in the algorithm at which the animation needs to
react or change. Each interesting event is animated by
visualization code inserted into the program’s source code. This
allows sophisticated visualizations to be produced, but the
learning curve can be rather steep.

4.2 Software and Algorithm Animation
Systems for Data Structures
JIVE. JIVE [8] takes the same approach to producing data
structure visualizations as JVALL [4], but provides a much richer
environment. JIVE includes a collection of Java classes that
implement pre-built animated data structures compatible with
standard Java classes from the JDSL, such as hashtables, graphs,
and search trees. In addition to supporting several different
animated data structures, JIVE also provides animation speed
control and a novel zooming interface to the animation that allows
a user to zoom in and out on large data structures. JIVE
automatically creates a visualization of any program that uses one
of its animated data structure classes. Users can also choose to
instantiate animated data structures in isolation and interact with
the animation through a graphical user interface. A distributed
virtual learning environment is provided to allow multiple users,
separated into teachers and students, to interact with the same
animated algorithm or data structure. jGRASP does not require
the use of special animated versions of classes in creating a data
structure visualizations. Instead, jGRASP generates these using
the actual classes (e.g., java.util.TreeMap).
SWAN. SWAN [13] is a visualization system designed for
creating animations of data structures in C and C++ programs.
Rather than packaging pre-animated data structures for immediate
use, SWAN allows users to create their own animations for
arbitrary programs. Users must annotate source code with calls to
the animation system. A separate component allows an annotated
program to be viewed as an animation. Although this approach to
animation is similar to that used by POLKA, SWAN is designed
to be much more compact, simple, and easy to use. Unlike many
animation systems, SWAN allows the user to modify the
underlying data structure by interacting directly with the
animation. jGRASP does not require users to annotate the source
code. Instead, jGRASP allows users to interactively create a
visualization by specifying a mapping between a particular object
structure and the graphical display.
JAWAA. JAWAA [1 is a scripting language for easily creating
web-based animations. Although JAWAA can be used for
general-purpose animation, common data structures such as stacks
are directly supported, thus making data structure animation
straightforward. To create an animation, JAWAA commands are
stored in a text file which can be created by hand or produced as
the output of a program. This text file is then called from a web
page which produces the animation. JAWAA is language

independent and programming experience is not required. An
editor is provided to allow animations to be laid out by creating
graphical objects and then showing how they change over time.
jGRASP data structure visualizations are produced dynamically as
the program executes and do not require the use of a scripting
language.
LIVE. LIVE [3] is an animation system designed to produce
visualizations of arbitrary data structure definitions. The system
also supports viewing a given visualization in multiple languages.
The graphical user interface to LIVE provides a source code
window where source code can be displayed and edited. An
associated canvas window allows the user to position, size, and
arrange graphical objects to correspond to the source code. The
source code can be run (interpreted) and the animation will be
automatically displayed. Direct manipulation of the animation is
supported, with the source code being automatically updated
appropriately. jGRASP generates the visualizations without
modifying the user’s source code.
SKA. SKA [5] was designed to specifically address the needs of
data structures instructors and students, rather than for advanced
graphical capabilities. The focus on user-centered design makes
SKA unique among most animation systems. SKA is composed of
an extensible Java library of pre-built animated data structures, a
data structure diagram manipulation environment, and an
algorithm animation system. SKA can create and manipulate
instances of the animated data structures independently of any
algorithm or source code, and it can also display animated
algorithms. To animate an algorithm, all data structures are
replaced with equivalent animated ones from the library, and a
source code annotation model similar to POLKA is used. jGRASP
does not require a set of pre-animated data structures and does not
use a source-code annotation model for producing the
visualizations.

4.3 Software and Algorithm Animation
Systems for Debugging
DDD. DDD [15], a front-end for a command-line debugger, offers
simple visualization of lists and trees. The visualizations are
generated directly from information available from the debugger
and thus no source code annotation is required. Users control the
visualization by setting breakpoints and other standard debugger
operations. Direct manipulation of the visualized data structures is
also supported (e.g., expanding a linked list one element at a time
by clicking on the next field of each node.) Simple node layout is
automated, but the user is allowed to reorganize the visualizations
by dragging and dropping nodes. DDD can visualize arbitrary
references between data, not just pointers. For example, the
relation between an array element and the data it contains can be
visualized. jGRASP also uses a debugger-based approach.
However, jGRASP is extensible and not restricted to visualizing
tree structures.
Lens. Lens [10] is an attempt to bridge the gap between
debugger-based systems such as DDD and sophisticated algorithm
animation systems like POLKA. Data structure visualization
systems that rely completely on debugger information to produce
the visualizations do not have the capability to integrate the rich
semantics of the program behavior that only a human animator
could supply. Lens integrates debugger-based visualization with
the interesting event annotation model. Interesting event
animation commands are attached to debugger breakpoints, and
thus dynamic animation-style data structure views can be created

390

using a combination of debugger information and user control.
Although integrated with a debugger, jGRASP visualizations do
not require source code or breakpoint annotations.
TRAVIS. Criticisms of applying the interesting event model to
debugger-based systems (as in Lens) include the difficulty in
identifying appropriate segments of code to annotate and the
inability to visualize data structures that have been created in an
already running program prior to being debugged [9]. Travis is a
data structure visualization system that is built on top of a
debugger (like DDD) and offers user-customizable graphical
displays (like Lens). Travis is not based on the interesting event
model like Lens, however. Instead it uses a traversal-based
visualization scheme in which the debugger traverses a data
structure and produces a visualization based on user-supplied
patterns that identify how particular parts of the data structure
should be displayed [9]. Travis provides a graphical user interface
for specifying these patterns. Direct manipulation of the
visualization is also supported. That is, if a user modifies the data
structure diagram, the underlying program objects are modified
accordingly. jGRASP is based on a model similar to Travis.
However, in addition to the data structure visualization, jGRASP
supports CSDs, UML, and other high-level object views as
synchronized visualizations.

5. SUMMARY AND CONTRIBUTIONS
An extensible framework has been implemented that allows the
creation of dynamic data structure visualizations within the
context of a lightweight IDE. Students and instructors can
implement data structure “viewers” that are automatically updated
to reflect updates on the data structure as a program runs. The
framework shields users from the complexities of graph drawing
and using the JDI through high-level APIs. Although controlled
experiments have not yet been performed to quantify the effect, if
any, that these visualizations have on student learning, the
anecdotal evidence collected to date is very encouraging.

REFERENCES
[1] Akingbade, A., Finley, T., Jackson, D., Patel, P., and

Rodger, S. (2003). JAWAA: Easy Web-Based Animation
for CS 0 to Advanced CS Courses. Proceedings of
SIGCSE 2003, Reno, NV, February 19-23, 2003, pp. 162-
166.

[2] Brown, M. H. and Sedgewick, R. (1985). Techniques for
Algorithm Animation. IEEE Software, 1 (Jan), pp. 28-39.

[3] Campbell, A. E. R., Catto, G. L., and Hansen, E. E. (2003).
Language-Independent Interactive Data Visualization.
Proceedings of SIGCSE 2003, Reno, NV, February 19-23,
2003, pp. 215-219.

[4] Dershem, H. L., McFall, R. L., and Uti, N. (2002).
Animation of Java Linked Lists. Proceedings of SIGCSE
2002, Covington, KY, February 27-March 3, 2002, pp. 53-
57.

[5] Hamilton-Taylor, A. G., and Kraemer, E. (2002). SKA:
Supporting Algorithm and Data Structure Discussion.
Proceedings of SIGCSE 2002, Covington, KY, February
27-March 3, 2002, pp. 58-62.

[6] Hansen, S. R., Narayanan, N. H., and Hegarty, M. (2002).
Designing Educationally Effective Algorithm
Visualizations: Embedding Analogies and Animations in
Hypermedia. Journal of Visual Languages and Computing,
13(2):291-317, Academic Press.

[7] Hubscher-Younger, T., and Narayanan N. H. (2003a).
Designing for Divergence. To appear in Proceedings of the
Computer Support for Collaborative Learning Conference,
Kluwer Academic Publishers.

[8] Jive (2003). http://jive.dia.unisa.it
[9] Korn, J. L., and Appel, A. W. (1998). Traversal-Based

Visualization of Data Structures. Proceedings of IEEE
Information Visualization ’98, October 1998, pp. 11-18.

[10] Mukherjea, S. and Stasko, J. T. (1994). Toward Visual
Debugging: Integrating Algorithm Animation Capabilities
within a Source-Level Debugger. ACM Transactions on
Computer-Human Interaction, Vol. 1, No. 3, September
1994, pp. 215-244.

[12] Sahni, S. (2000). Data Structures, Algorithms, and
Applications in Java. McGraw-Hill.

[13] Shaffer, C. A., Heath, L. S., and Yang, J. (1996). Using the
Swan Data Structure Visualization System for Computer
Science Education. Proceedings of SIGCSE ’96,
Philadelphia, PA, February 1996, pp. 140-144.

[14] Stasko, J. T. (1990). TANGO: A Framework and System
for Algorithm Animation. Computer, 23, 9 (Sep), pp. 27-
39.

[15] Zeller, A. (2001). Visual Debugging with DDD. Dr.
Dobb’s Journal, March 2001.

391

