
Overview (1.8.7) 9/2/2009

1

Overview of jGRASP and the Tutorials

jGRASP is a lightweight integrated development environment (IDE), created
specifically to provide visualizations for improving the comprehensibility of
software. jGRASP is implemented in Java, and thus, runs on all platforms with
a Java Virtual Machine. jGRASP supports Java, C, C++, Objective-C, Ada, and
VHDL, and it comes configured to work with several popular compilers to
provide “point and click” compile and run functions. jGRASP is the latest IDE
from the GRASP (Graphical Representations of Algorithms, Structures, and
Processes) research group at Auburn University.

jGRASP currently provides for the automatic generation of three important
software visualizations: (1) Control Structure Diagrams (Java, C, C++,
Objective-C, Ada, and VHDL) for source code visualization, (2) UML Class
Diagrams (Java) for architectural visualization, and (3) Dynamic Viewers (Java)
which provide runtime views for primitives and objects including traditional
data structures such as linked lists and binary trees. jGRASP also provides an
innovative Object Workbench, Debugger, and Interactions which are tightly
integrated with these visualizations. Each is briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram
generated for Ada, C, C++, Objective-C, Java and VHDL. The CSD is intended
to improve the comprehensibility of source code by clearly depicting control
constructs, control paths, and the overall structure of each program unit. The
CSD, designed to fit into the space that is normally taken by indentation in
source code, is an alternative to flow charts and other graphical representations
of algorithms. The CSD is a natural extension to architectural diagrams such as
UML class diagrams.

The CSD window in jGRASP provides complete support for CSD generation as
well as editing, compiling, running, and debugging programs. After editing the
source code, regenerating a CSD is fast, efficient, and non-disruptive. The
source code can be folded based on CSD structure (e.g., methods, loops, if
statements, etc.), then unfolded level-by-level. Standard features for program
editors such as syntax based coloring, cut, copy, paste, and find-and-replace are
also provided.

The UML Class Diagram is currently generated for Java source code from all
Java class files and jar files in the current project. Dependencies among the
classes are depicted with arrows (edges) in the diagram. By selecting a class, its
members can be displayed, and by selecting an arrow between two classes, the
actual dependencies can be displayed. This diagram is a powerful tool for
understanding a major element of object-oriented software - the dependencies
among classes.

Overview (1.8.7) 9/2/2009

2

The Dynamic Viewers for objects and primitives provide visualizations as the
user steps through a program in debug mode or invokes methods for an object
on the workbench. Textbook-like Presentation views are available for instances
of classes that represent traditional data structures. When a viewer is opened, a
structure identifier attempts to automatically recognize linked lists, binary trees,
hash tables, and array wrappers (lists, stacks, queues, etc.) during debugging or
workbench use. When a positive identification is made, an appropriate
presentation view of the object is displayed. The structure identifier is intended
to work for user classes, including textbook examples, as well as the most
commonly used classes in the Java Collections Framework (e.g., ArrayList,
LinkedList, HashMap, and TreeMap). A future Viewer API will allow users to
create custom dynamic views of their own classes.

The Object Workbench, in conjunction with the UML class diagram, CSD
window, and Interactions, allows the user to create instances of classes and
invoke their methods. After an object is placed on the Workbench, the user can
open a viewer to observe changes resulting from the methods that are invoked.
The Workbench paradigm has proven to be extremely useful for teaching and
learning object-oriented concepts, especially for beginning students.

The Integrated Debugger works in conjunction with the CSD window, UML
window, Object Workbench, and Interactions. The Debugger provides a
seamless way for users to examine their programs step by step. The execution
threads, call stack, and local variables are easily viewable during each step. The
jGRASP debugger has been used extensively during lectures as a highly
interactive medium for explaining programs.

The Interactions (new in jGRASP 1.8.7) feature allows users to enter most Java
statements and expressions and then execute or evaluate them immediately.
Interactions can be especially helpful when learning and experimenting with
new elements in the Java language.

The jGRASP Tutorials provide best results when read while using jGRASP;
however, they are sufficiently detailed to be read in a stand-alone fashion by a
user who has experience with one or more other IDEs. The tutorials are quite
suitable as supplemental assignments during a course. When working with
jGRASP and the tutorials, students can use their own source code, or they can
use the examples shown in the tutorials (..\jGRASP\examples\Tutorials\). Users
should copy the examples folder to their own directories prior to modifying
them. The Tutorials are listed below along with suggestions for their use.

1 Installing jGRASP – Most users will skip this tutorial. However, it does
provide details on the installation process as well as instructions for changing

Overview (1.8.7) 9/2/2009

default startup settings for jGRASP. This tutorial also describes how to set the
system path and the Java classpath from within jGRASP.

2 Getting Started – This tutorial is a good starting place for those new to
jGRASP. It introduces the process of creating and editing Java source files, then
compiling and running programs. It also introduces interactions, the control
structure diagram, and the debugger.

3 Getting Started with Objects – This tutorial is a good starting place for those
interested in an Objects First approach to learning Java, but it assumes the
reader will refer to the previous tutorial as needed. Projects, UML class
diagrams, the Object Workbench, and Viewers are introduced.

The topics that are introduced in Getting Started and Getting Started with
Objects are covered in more depth in the following seven tutorials. In most
cases, these tutorials may be read as a topic becomes relevant to a user,
rather than in the order indicated by their numbers.

4 Interactions – Although the Interactions feature is introduced in Getting
Started and Getting Started with Objects, this tutorial provides examples for
several common scenarios, including multi-line interactions and how to copy
and paste interactions.

5 The Control Structure Diagram – This tutorial is perhaps best read as control
structures such as the if, if-else, switch, while, for, and do statements are studied.
However, for those already familiar with the common control structures of
programming languages, the tutorial can be read at any time. The latter part
contains some helpful hints on getting the most out of the CSD.

6 The Integrated Debugger – This tutorial can be done anytime. Students
should be encouraged to begin using the debugger early on so that they can step
through their programs, even if only to observe variables as their values change.

7 Projects – This tutorial discusses the concept of a project file (.gpj) in
jGRASP which stores all information for a specific project. This includes the
names (and paths) of each file in the project, the project settings, and the layout
of the UML diagram. Some users may want to work in projects from the
beginning while others want to deal with projects only when programs have
multiple classes or files.

8 The UML Class Diagram – The focus of this tutorial is on generating a UML
class diagram for a project and then using the diagram as a basis for creating
instances for the workbench. This tutorial assumes the user understands the
concept of a project and is able to create one (Tutorial 4).

3

Overview (1.8.7) 9/2/2009

4

9 The Workbench – This tutorial assumes the user is able to create a project
(Tutorial 4) and work with UML class diagrams (Tutorial 5). The workbench
provides an exciting way to approach object-oriented concepts and
programming by allowing the user to create objects and invoke methods
directly.

10 Viewers for Data Structures – This tutorial provides a more in-depth
introduction to using Viewers with linked lists, binary trees, and other traditional
data structures. Examples of presentation views are included for instances of
non-JDK implementations for a linked list and binary tree as well as for
instances of ArrayList, LinkedList, HashMap, and TreeMap.

For additional information and to download jGRASP, please visit our web site
(http://www.jgrasp.org).

http://www.jgrasp.org/

