
Control Structure Diagram (2.0.0) 8/8/2013

5-1

5 The Control Structure Diagram (CSD)
The Control Structure Diagram (CSD) is an algorithmic level diagram intended
to improve the comprehensibility of source code by clearly depicting control
constructs, control paths, and the overall structure of each program unit. The
CSD is an alternative to flow charts and other graphical representations of
algorithms. The major goal behind its creation was that it be an intuitive and
compact graphical notation that is easy to use manually and relatively
straightforward to automate. The CSD is a natural extension to architectural
diagrams, such as class and module diagrams.

Objectives – When you have completed this tutorial, you should be able to use
and understand the graphical notations used in the CSD for basic control
constructs of modern programming languages, including sequence, selection,
iteration, exits, and exception handling.

The details of these objectives are captured in the hyperlinked topics listed
below.

5.1 An Example to Illustrate the CSD
5.2 CSD Program Components/Units
5.3 CSD Control Constructs
5.4 CSD Templates
5.5 Hints on Working with the CSD
5.6 Reading Source Code with the CSD
5.7 References

Control Structure Diagram (2.0.0) 8/8/2013

5-2

5.1 An Example to Illustrate the CSD

 Figure 5-1 shows the source code for a Java method called binarySearch. The
method implements a binary search algorithm by using a while loop with an
if..else..if statement nested within the loop. Even though this is a simple
method, displayed with colored keywords and traditional indentation, its
readability can be improved by adding the CSD. In addition to the while and if
statements, we see that the method includes the declaration of primitive data
(int) and two points of exit. The CSD provides visual cues for each of these
constructs.

Figure 5-1. binarySearch method without CSD

Figure 5-2 shows the binarySearch method after the CSD has been generated.
Although all necessary control information is in the source text, the CSD
provides additional visual cues by highlighting the sequence, selection, and
iteration in the code. The CSD notation begins with symbol for the method
itself Þßà followed by the individual statements branching off the stem as it
extends downward. The declaration of primitive data is highlighted with the
symbol í appended to the statement stem. The CSD construct for the while
statement is represented by the double line “loop” (with break at the top), and
the if statement uses the familiar diamond symbol from traditional flowcharts.

Control Structure Diagram (2.0.0) 8/8/2013

5-3

Finally, the two ways to exit from this method are shown explicitly with an
arrow drawn from inside the method through the method stem to the outside.

Figure 5-2. binarySearch with CSD

While this is a small piece of code, it does illustrate the basic CSD constructs.
However, the true utility of the CSD can be realized best when reading or
writing larger, more complex programs, especially when control constructs
become deeply nested. A number of studies involving the CSD have been done
and others are in progress. In one of these, the CSD was shown to be preferred
significantly over four other notations: flowchart, Nasi-Schneiderman chart,
Warnier-Orr diagram, and the action diagram [Cross 1998]. In a several later
studies, empirical experiments were done in which source code with the CSD
was compared to source code without the CSD. In each of these studies, the
CSD was shown to provide significant advantages in numerous code reading
activities [Hendrix 2002]. In the following sections, the CSD notation is
described in more detail.

Control Structure Diagram (2.0.0) 8/8/2013

5-4

5.2 CSD Program Components/Units

The CSD includes graphical constructs for the following components or
program units: class, abstract class, method, and abstract method. The construct
for each component includes a unit symbol, a box notation, and a combination
of the symbol and box notation. The symbol notation provides a visual cue as to
the specific type of program component. It has the most compact vertical
spacing in that it retains the line spacing of source code without the CSD. The
box notation provides a useful amount of vertical separation similar to skipping
lines between components. The symbol and box notation is simply a
combination of the first two. Most of the examples in this handbook use the
symbol notation because of its compactness. CSD notation for program
components is illustrated in the table below.

Component Symbol
Notation Box Notation Symbol and Box

Notation

class
or
Ada

package

abstract
class

method

or
function

or
procedure

abstract
method

Control Structure Diagram (2.0.0) 8/8/2013

5-5

5.3 CSD Control Constructs

The basic CSD control constructs for Java are grouped in the following
categories: sequence, selection, iteration, and exception handling, as described
in the table below. The semi-colons in the examples are placeholders for
statements in the language.

Sequence

Sequential flow is represented
in the CSD by a vertical stem
with a small horizontal stem for
each individual statement on a
particular level of control.

Selection
if

if..else

if..else..if

For selection statements, the
True/False condition itself is
marked with a small diamond,
just as in a flow chart. The
statements to be executed if the
condition is true are marked by
a solid line leading from the
right of the decision diamond.

The control path for a false
condition is marked with a
dotted line leading from the
bottom of the diamond to
another decision diamond, an
else clause, a default clause, or
the end of the decision
statement.

By placing the second if on the
same line with the first else, the
unnecessary indentation of
nested if statements is avoided.
However, if the deep nesting
effect is desired, the second if
can be placed on the line after
the else.

Control Structure Diagram (2.0.0) 8/8/2013

5-6

Selection
(cont’d)

switch

switch

when
break is
omitted

The semantics of the switch
statement are different from
those of if statements. The
expression (of integral or enum
type) is evaluated, and then
control is transferred to the case
label matching the result or to
the default label if there is no
match. If a break statement is
placed at the end of the
sequence within a case, control
passes “out” (as indicated by
the arrow) and to the end of the
switch statement after the
sequence is executed. Notice
the similarity of the CSD
notation for the switch and if
statements when the break is
used in this conventional way.
The reason for this is that,
although different semantically,
we humans tend to process
them the same way (e.g., if expr
is not equal to case 1, then take
the false path to case 2 and see
if they are equal, and so on).
However, the break statement
can be omitted as illustrated
next.

When the break statement is
omitted from end of the
sequence within a case, control
falls through to the next case.
In the example at left, case 1
has a break statement at the end
of its sequence, which will pass
control to the end of the switch
(as indicated by the arrow).
However, case 2, case 3, and
case 4 do not use the break
statement. The CSD notation
clearly indicates that once the
flow of control reaches case 2,
it will also execute the
sequences in case 3 and case 4.

Control Structure Diagram (2.0.0) 8/8/2013

5-7

The diamonds in front of case 3
and case 4 have arrows pointing
to each case to remind the user
that these are entry points for
the switch. When the break
statement precedes the next
case (as in case 1), the arrows
are unnecessary.

Iteration

while loop

(pre-test)

for loop

(discrete)

do loop

(post-test)

The CSD notation for the while
statement is a loop construct
represented by the double line,
which is continuous except for
the small gap on the line with
the while. The gap indicates
the control flow can exit the
loop at that point or continue,
depending on the value of the
boolean condition. The
sequence within the while will
be executed zero or more times.

The for statement is
represented in a similar way.
The for statement is designed to
iterate a discrete number of
times based on an index, test
expression, and index
increment. In the example at
left, the for index is initialized
to 0, the condition is i < j, and
the index increment is i++. The
sequence within the for will be
executed zero or more times.

The do statement is similar to
the while except that the loop
condition is at the end of the
loop instead of the beginning.
Thus, the body of the loop is
guaranteed to execute at least
once.

Control Structure Diagram (2.0.0) 8/8/2013

5-8

break in
loop

Iteration
(cont’d)

continue

The break statement can be
used to transfer control flow out
of any loop (while, for, do)
body, as indicated by the arrow,
and down to the statement past
the end of the loop. Typically,
this would be done in
conjunction with an if
statement. If the break is used
alone (e.g., without the if
statement), the statements in the
loop body beyond the break
will never by executed.

The continue statement is
similar to the break statement,
but the loop condition is
evaluated and if true, the body
of the loop body is executed
again. Hence, as indicated by
the arrow, control is not
transferred out of the loop, but
rather to top or bottom of the
loop (while, for, do).

Exception
Handling

In Java, the control construct
for exception handling is the
try..catch statement with
optional finally clause. In the
example at left, if the statement
in the try block generates an
exception e, then control is
transferred to the corresponding
catch clause. After the catch
body is executed, the finally
clause (if present) is executed.
If no exception occurs in the try
block, when it completes, the
finally clause (if present) is
executed.

Control Structure Diagram (2.0.0) 8/8/2013

5-9

With a
return

The try..catch statement can
have multiple catch clauses,
one for each exception to be
handled.

By definition, the finally clause
is always executed no matter
how the try block is exited. In
the example at left, a return
statement causes flow of
control to leave the try block.
The CSD indicates that flow of
control passes to the finally
clause, which is executed prior
to leaving the try block. The
CSD uses this same convention
for break and continue when
these cause a try block to be
exited.

When try blocks are nested and
break, continue, and return
statements occur at the different
levels of the nesting, the actual
control flow can become quite
counterintuitive. The CSD can
be used to clarify the control
flow.

Control Structure Diagram (2.0.0) 8/8/2013

5-10

5.4 CSD Templates

In Figure 5-3, the basic CSD control constructs, described above, are shown in
the CSD window. These are generated automatically based on the text in the
window. In addition to being typed or read from a file, the text can be inserted
from a list of templates by selecting Templates on the CSD window tool bar.

Figure 5-3. CSD Control Constructs generated in CSD Window

Control Structure Diagram (2.0.0) 8/8/2013

5-11

5.5 Hints on Working with the CSD

The CSD is generated based on the source code text in the CSD window. When
you click View > Generate CSD (or press F2), jGRASP parses the source code
based on a grammar or syntax that is slightly more forgiving than the Java
compiler. If your program will compile successfully, the CSD should generate
successfully as well. However, the CSD may generate successfully even if your
program will not compile. Your program may be syntactically correct, but not
necessarily semantically correct. For the most part, CSD generation is based on
the syntax of your program only.

Enter code in syntactically correct chunks - To reap the most benefit from
using the CSD when entering a program, you should take care to enter code in
syntactically correct chunks, and then regenerate the CSD often. If an error is
reported, it should be fixed before you move on. If the error message from the
generate step is not sufficient to understand the problem, compile your program
and you will get a more complete error message.

“Growing a program” is described it the table below. Although the program
being “grown” does nothing useful, it is both syntactically and semantically
correct. More importantly, it illustrates the incremental steps that should be
used to write your programs. After the code is entered in each step, click the
Generate CSD button or press F2 to generate the CSD.

Step Code to Enter After CSD is generated

1

public class MyClass
{
}

2

public class MyClass
{
 myMethod()
 {
 }
}

Control Structure Diagram (2.0.0) 8/8/2013

5-12

3

public class MyClass
{
 myMethod()
 {
 while (true)
 {
 ;
 }
 }
}

5.6 Reading Source Code with the CSD

The CSD notation for each of the control constructs has been carefully designed
to aid in reading and scanning source code. While the notation is meant to be
intuitive, there are several reading strategies worth pointing out, especially for
deeply nested code.

Reading Sequence

The visualization of sequential
control flow is as follows. After
statement s(1) is executed, the next
statement is found by scanning
down and to the left along the
solid CSD stem. While this seems
trivial, its importance becomes
clearer with the if statement and
deeper nesting.

Reading Selection

Now combining the sequence with
selection (if.. else), after s(1), we
enter the if statement marked by
the diamond. If the condition is
true, we follow the solid line to
s(2). After s(2), we read down and
to the left (passing through the
dotted line) until we reach the next
statement on the vertical stem
which is s(4). If the condition is
false, we read down the dotted line

Control Structure Diagram (2.0.0) 8/8/2013

5-13

(the false path) to the else and then
on to s(3). After s(3), again we
read down and to the left until we
reach the next statement on the
stem which is s(4).

Reading Selection with Nesting

As above, after s(1), we enter the
if statement and if cond1 and
cond2 are true, we follow the solid
lines to s(2). After s(2), we read
down and to the left (passing
through both dotted lines) until we
reach the next statement on the
stem which is s(4). If cond1 is
false, we read down the dotted line
(the false path) to s(4). If cond2 is
false, we read down the dotted line
to the else and then on to s(3).
After s(3), again we read down
and to the left until we reach to the
next statement on the stem which
is s(4).

Reading Selection with
Even Deeper Nesting

If cond1, cond2, and cond3 are
true, we follow the solid lines to
s(2). Using the strategy above, we
immediately see the next statement
to be executed will be s(7).

If cond1 is true but cond2 is false,
we can easily follow the flow to
either s(4) or s(5) depending on
cond4.

If s(4) is executed, we can see
immediately that s(7) follows.

In fact, from any statement,
regardless of the level of nesting,
the CSD makes it easy to see
which statement is executed next.

Control Structure Diagram (2.0.0) 8/8/2013

5-14

Reading without the CSD

It should be clear from the code at
right that following the flow of
control without the CSD is
somewhat more difficult.

For example, after s(3) is
executed, s(7) is next. With the
CSD in the previous example, the
reader can tell this at a glance.
However, without the CSD, the
reader may have to read and reread
to ensure that he/she is seeing the
indentation correctly.

While this is a simple example, as
the nesting becomes deeper, the
CSD becomes even more useful.

In addition to saving time in the
reading process, the CSD aids in
interpreting the source code
correctly, as seen in the examples
that follow.

 s(1);
 if (cond1)
 if (cond2)
 if (cond3)
 s(2);
 else
 s(3);
 else
 if (cond4)
 s(4);
 else
 s(5);
 else
 s(6);
 s(7);

Control Structure Diagram (2.0.0) 8/8/2013

5-15

Reading Correctly with the CSD

Consider the fragment at right with
s(1) and s(2) in the body of the if
statement.

After the CSD is generated, the
reader can see how the compiler
will interpret the code, and add the
missing braces.

 s(1);
 if (cond)
 s(2);
 s(3);

Here is another common mistake
made obvious by the CSD.

The semi-colon after the condition
was almost certainly unintended.
However, the CSD shows what is
there rather than what was
intended.

 if (cond);
 s(2);
 s(3);

Similarly, the CSD provides the
correct interpretation of the while
statement.

 Missing braces . . .

.

 while (cond)
 s(2);
 s(3);

Similarly, the CSD provides the
correct interpretation of the while
statement.

 Unintended semi-colon . . .

 while (cond);
 s(2);
 s(3);

Control Structure Diagram (2.0.0) 8/8/2013

5-16

As a final example of reading source code with the CSD, consider the following
program, which is shown with and without the CSD. FinallyTest illustrates
control flow when a break, continue, and return are used within try blocks that
each have a finally clause. Although the flow of control may seem somewhat
counterintuitive, the CSD should make it easier to interpret this source code
correctly. First read the source code without the CSD. Recall that by definition,
the finally clause is always executed not matter how the try block is exited.

Try-Finally with break, continue, and return statements with no CSD

Control Structure Diagram (2.0.0) 8/8/2013

5-17

Try-Finally with break, continue, and return statements with CSD

Control Structure Diagram (2.0.0) 8/8/2013

5-18

In our experience, this code is often misinterpreted when read without the CSD,
but understood correctly when read with the CSD. Refer to the output if you
need a hint. The output for FinallyTest is as follows:

ÏÏfinally 1
ÏÏi 0
ÏÏfinally 2
ÏÏi 1
ÏÏfinally 2
ÏÏfinally 3

5.7 References

[Cross 1998] J. H. Cross, S. Maghsoodloo, and T. D. Hendrix, "Control
Structure Diagrams: Overview and Initial Evaluation," Journal of Empirical
Software Engineering, Vol. 3, No. 2, 1998, 131-158.

[Hendrix 2002] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and K. H. Chang,
“Empirically Evaluating Scaleable Software Visualizations: An Experimental
Framework,” IEEE Transactions on Software Engineering, Vol. 28, No. 5, May
2002, 463-477.

	5 The Control Structure Diagram (CSD)
	5.1 An Example to Illustrate the CSD
	5.2 CSD Program Components/Units
	5.3 CSD Control Constructs
	5.4 CSD Templates
	5.5 Hints on Working with the CSD
	5.6 Reading Source Code with the CSD
	5.7 References

