
GRASP/Ada 95:

Visualization with Control Structure Diagrams

Dr. James H. Cross II, Dr. Kai H. Chang, and T. Dean Hendrix,

Auburn University

Abstract

The Graphical Representations of Algorithms, Structures, and Processes for Ada

(GRASP/Ada) project has successfully created and prototyped a new algorithmic level

graphical representation for Ada software, the Control Structure Diagram (CSD). The primary

impetus to create and refine the CSD is to improve the comprehension efficiency of Ada

software, and as a result, improve reliability and reduce costs. The emphasis is on the

automatic generation of the CSD from Ada 95 source code to support design, implementation,

testing, and maintenance. The CSD has the potential to replace traditional pretty-printed Ada

source code. An important additional focus of the GRASP/Ada 95 project is on the generation

of a new fine-grained complexity metric called the Complexity Profile Graph (CPG), which

will be synchronized with the CSD to provide both visualization and measurement of Ada 95

source code. By synchronizing the CSD and the CPG, the CSD view of control structure,

nesting, and source code will be directly linked to the corresponding visualization of

statement level complexity in the CPG. In this article, an overview of the GRASP/Ada 95

project at Auburn University is presented with emphasis on the Control Structure Diagram

and the current prototype.

Introduction

Computer professionals have long promoted the idea that graphical representations of

software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large, complex systems [1, 2, 3, 4,

5, 6]. The general goal of the GRASP/Ada research project is the investigation, formulation,

and generation of graphical representations of algorithms, structures, and processes for

Ada [7, 8]. The research is currently focused on the generation or reverse engineering of CSDs

and CPGs from Ada 95 source code. The CPG is the visualization of a new fine-grained

complexity metric [9]. The CSD and the CPG will be synchronized so that the CSD view of

control structure, nesting, and source code is directly linked to the corresponding visualization

of statement-level complexity in the CPG.

The primary motivation for the generation of graphical representations is increased support

for software lifecycle activities that range from design through maintenance with emphasis on

visual verification and measurement. These activities should be greatly facilitated by an

automatically generated set of formalized diagrams and graphs to supplement the source code

Originally published in CrossTalk, Jan. 1996.

and other forms of existing documentation. The GRASP/Ada 95 software tool has the

potential to be a powerful aid in any environment where Ada 95 is expected to be read or

written. The tool is particularly suitable for activities during detailed design, implementation,

testing, maintenance, and reengineering. The CSD is expected to be a valuable aid in

comprehension and analysis of overall program structure and flow of control, while the CPG

is expected to provide additional valuable insight by visualizing the complexity of both

context and content. The following sections describe the control structure diagram and the

GRASP/Ada 95 prototype.

The Control Structure Diagram

Although much of the recent research activity in software visualization and computer-aided

software engineering tools has focused on architectural-level charts and diagrams, the

complex nature of the control constructs and control flow defined by a programming language

such as Ada 95 makes source code and detailed design specifications attractive candidates for

graphical representation. In particular, source code should benefit from the use of an

appropriate graphical notation since it must be read many times during the course of initial

development, testing, and maintenance. The CSD is a notation intended specifically for the

graphical representation of algorithms in detailed designs as well as actual source code. The

primary purpose of the CSD is to reduce the time required to comprehend software by clearly

depicting the control constructs and control flow at all relevant levels of abstraction. The CSD

is a natural extension to existing architectural graphical representations such as data flow

diagrams, structure charts, and object diagrams. The CSD, which was initially created for

Pascal [10], has been extended significantly so that the graphical constructs of the CSD map

directly to the constructs of Ada [11]. The rich set of control constructs in Ada, e.g., task

rendezvous, and the wide acceptance of Ada by the software engineering community as a

detailed design language made Ada a natural choice for the basis of a graphical notation. A

major objective in the philosophy that guided the development of the CSD was that the

graphical constructs should supplement the code or the program design language without

disrupting its familiar appearance; that is, the CSD should appear to be a natural extension to

the Ada constructs, and similarly, the Ada source code should appear to be a natural extension

of the diagram. This has resulted in a concise, compact graphical notation that attempts to

combine the best features of diagraming with those of well-indented source code.

Figure 1: Ada for Binary Search.

Two examples, using the GRASP/Ada 95 CSD generator/editor, are presented in the

following figures to illustrate the CSD. The first example shows the basic control constructs

of sequence, selection, and iteration that are common to all structured procedural languages

such as Ada and C. The second example illustrates a more complex control constructthe task

rendezvous in Ada.

Figure 1 contains an Ada procedure called BinarySearch that searches for Key in an array A

over its index range-constrained type integer. If Key is found, WhereFound is set to the index

of Key in A; otherwise, WhereFound is zero when the procedure terminates.

Figure 2 contains the corresponding CSD. Although this is a simple example, the CSD clearly

indicates the levels of control inherent in the nesting of control statements. For example, at

level 1 there are four statements executed in sequencethe three assignment statements and

the while loop. The while loop defines a second level of control which contains an assignment

statement and an if statement, which in turn defines three separate third-level sequences, each

of which contains one assignment statement. It is noteworthy that the CSDs for most well-

structured production-strength procedures rarely contain more than 10 statements at level 1 or

in any of the subsequences defined by control constructs for selection and iteration. This

graphical chunking based on functionality and level of control appears to have a substantial

positive effect on detailed comprehension of the software. By clicking on the Generate CSD

or CSD to Code buttons, users can easily switch between the code and the CSD to make their

own assessment of improved readability provided by the CSD.

Figure 2: CSD for Binary Search.

Figure 3: Ada for Controller.

Figure 3 shows an Ada task body controller, which loops through a priority list attempting to

accept selectively a request with priority P. Upon acceptance, some action is taken, followed

by an exit from the priority list loop to restart the loop with the first priority. In typical Ada

task fashion, the priority list loop is contained in an outer infinite loop. This short example

contains two threads of control: the rendezvous with a task from outside controller, which

enters and exits at the accept statement, and the thread within the task body. In addition, the

priority list loop contains two exits: the normal exit at the beginning of the loop when the

priority list has been exhausted, and an explicit exit invoked within the select statement.

Although the concurrency and multiple exits are useful in modeling the solution, they clearly

increase the effort required of the reader to comprehend the code.

Figure 4: CSD for Controller.

The CSD in Figure 4 uses intuitive graphical constructs to depict the point of rendezvous, the

two nested loops, the select statement enclosing the accept statement for the task, the

unconditional exit from the inner loop, and the overall control flow of the task. When reading

the code without the diagram, as shown in Figure 3, the control constructs and control paths

are much less obvious, although the same structural and control information is indicated by

indentation and the semantics of the text. With additional levels of nesting and increased

physical separation of sequential components, the visibility of control constructs and control

paths becomes increasingly obscure, and the effort required of the reader dramatically

increases in the absence of the CSD. In fact, our experience to date indicates that after reading

source code with a CSD as in Figure 4, users have a definite preference for it over source code

only as in Figure 3.

Ongoing research includes creation of additional graphical constructs as deemed appropriate

and the creation of custom font symbols for each program unit in Ada 95. The program unit

symbols are a new and innovative feature that is expected to increase the effectiveness of the

CSD by providing a visual link from the CSD to object diagrams at the architectural level as

well as the more traditional structure charts and data flow diagrams.

The GRASP/Ada Prototype

The current prototype, Version 4.2, provides a CSD window, which is a full-function text

editor with the capability to generate, display, edit, and print CSDs. The File and Edit options

are similar to traditional text editors. View will allow the user to select between the current

CSD drawing mode and the future program unit symbols. The Ada option opens a tear-off

menu of selectable Ada templates. When a template name is clicked, it is inserted at the point

of the cursor. The CSD in Figure 5 is the result of clicking on templates for package

body, procedure body, and infinite loop. The user may add custom templates to the list.

Figure 5: Using Ada Templates.

Version 4.3 (March 1996) will provide for coupling with an Ada compiler. The CSD window

will allow the user to invoke an Ada compiler directly for the current program unit, and when

an error is reported by the compiler, the offending line of code will be highlighted in the

diagram. Version 4.3 beta is currently being tested as a front end for GNAT [12] in three

computer science and engineering courses at Auburn University.

Since the CSD generation and display cycle is extremely fast (less than one-half second for

3,000 lines of Ada), no residual intermediate files are written under normal operation. When a

file that contains an Ada program unit is loaded, the CSD is automatically generated if Auto

(next to Generate CSD on the tool bar) is turned on. Otherwise, the user may generate the

CSD on demand by clicking the Generate CSD button, which is usually done routinely during

the course of editing to redraw the diagram. If a parse error is encountered during CSD

generation, the cursor is moved to the highlighted line that contains the error to aid the user in

making corrections. When the user saves a file, the CSD is filtered so that only the Ada source

code is retained. The net result is that the CSD window can be used in place of a traditional

program editor to generate, display, edit, and print CSDs with no additional overhead, i.e., the

CSD is essentially free.

 | |

 | GUI (Motif) |

 |_______________|

 / | \

 / | \

 / | \

 / | \

 / | \

 ____/_____ ____|____ ________

 | | | | | |

 | CSDgen | | CPGen | | ODgen |

 |__________| |_________| |_________|

 | | |

 _____|__________________|___________________|_____

 | GRASPlib UNIX File System |

 |__|

 | | | |

 | | | |

 | | | |

 source code CSD CPG OD

 Figure 6: GRASP/Ada 95 Block Diagram

The major system components of the GRASP/Ada 95 prototype, which is being written in a

combination of C and Ada 95, are shown in the block diagram in Figure 6. The user interface

was built using Motif and the X Window System and includes a main control window to

provide general coordination among the other componentsCSDgen, CPGgen, and ODgen.

Version 5 will include the generation of the complexity profile graph (CPGgen) and a CPG

window, which will be synchronized with the current CSD window. Version 6 will include an

object diagram generation component, ODgen, and respective object diagram window.

Automatic diagram layout is under investigation, and several design alternatives have been

identified, including whether to integrate GRASP/Ada directly with commercial components.

For example, GRASP/Ada could be integrated with an Ada development environment that

provides an Ada semantic interface specification that would support the identification and

extraction of objects. The GRASP/Ada library component, GRASPlib, supports coordination

of all generated items with their associated source code. The current file organization uses

standard UNIX directory conventions as well as default naming conventions to facilitate

navigation among the diagrams and the production of sets of diagrams.

Conclusion

The CSD has the potential to significantly improve the quality of detailed design and

implementation by supplementing or replacing traditional pretty-printed Ada source code. As

illustrated by Figures 1 through 5, the CSD provides a compact graphical representation.

When compared to traditional source code listings, the CSD requires little, if any, additional

space for storage and hard copy. The additional time required to generate a CSD using

GRASP/Ada, display it in a window, or print it using a laser printer is negligible.

The graphical constructs of the CSD map directly to the constructs of Ada 95. The rich set of

control constructs in Ada 95, e.g., task rendezvous, and the wide acceptance of Ada by the

software engineering community as a detailed design language made Ada a natural choice for

the basis of a graphical notation. A major objective in the philosophy that guided the

development of the CSD was that the graphical constructs should supplement the code

without disrupting its familiar appearance; that is, the CSD should appear to be a natural

extension to the Ada constructs, and similarly, the Ada source code should appear to be a

natural extension of the diagram. This has resulted in a concise, compact graphical notation

which attempts to combine the best features of diagraming with those of well-indented source

code.

The current GRASP/Ada prototype, although only one of a set of required visualization tools,

has clearly indicated the utility of the CSD. Enhancements to the CSD and the addition of the

CPG and OD will only increase its effectiveness as a tool to improve the comprehensibility

and measurement of software.

(Editor's Note: This article is copyright © 1995 James H. Cross II, Kai H. Chang, and T.

Dean Hendrix. The GRASP/Ada tool, copyright © 1995 Auburn University, is offered free of

charge.)

Acknowledgments

Research on the GRASP/Ada project has been supported in part by grants from Marshall

Space Flight Center, and the Advanced Research Projects Agency. Current graduate students

working on the GRASP/Ada prototype include Larry Barowski and Joseph Teate.

James H. Cross II, Kai H. Chang, and T. Dean Hendrix

Computer Science and Engineering

107 Dunstan Hall

Auburn University, AL 36849-5347

Voice: 334-844-4330

Fax: 334-844-6329

E-mail:cross@eng.auburn.edu

References

1. Martin, J., and C. McClure, Diagramming Techniques for Analysts and Programmers,

Englewood Cliffs, N.J., Prentice-Hall, 1985.

2. Shu, Nan C., Visual Programming, New York, N.Y., Van Norstrand Reinhold Company,

Inc., 1988.

3. Aoyama, M., et. al., "Design Specification in Japan: Tree-Structured Charts," IEEE

Software, March 1989, pp. 31-37.

4. Scanlan, D.A., "Structured Flowcharts Outperform Pseudocode: An Experimental

Comparison," IEEE Software, September 1989, pp. 28-36.

5. Tripp, L.L., "A Survey of Graphical Notations for Program DesignAn Update," ACM

Software Engineering Notes, Vol. 13, No. 4, 1989, pp. 39-44.

6. Cross, J.H., E.J. Chikofsky, and C.H. May, "Reverse Engineering," Advances in

Computers, Vol. 35, 1992, pp. 199-254.

7. Cross, J.H., "Improving Comprehensibility of Ada with Control Structure

Diagrams," Proceedings of Software Technology Conference, April 11-14, 1994, Salt Lake

City, Utah (distributed on CD-ROM), 25 pages.

8. Cross, J.H., and T.D. Hendrix, "Using Generalized Markup and SGML for Reverse

Engineering Graphical Representations of Software," Proceedings of Working Conference on

Reverse Engineering, July 16-19, 1995, Toronto, pp. 2-6.

9. McQuaid P.A., K.H. Chang, and J.H. Cross, "Complexity Metric to Aid Software Testing

and Maintenance," Proceedings of Decision Sciences Institute, Nov. 20-22, 1995, Boston,

Mass., Vol. 2, pp. 862-864.

10. Cross, J.H., and S.V. Sheppard, "The Control Structure Diagram: An Automated

Graphical Representation For Software," Proceedings of the 21st Hawaii International

Conference on Systems Sciences (Kailui-Kona, Hawaii, Jan. 5-8, 1988), IEEE Computer

Society Press, Washington, D.C., 1988, Vol. 2, pp. 446-454.

mailto:cross@eng.auburn.edu

11. Cross, J.H., S.V. Sheppard, and W.H. Carlisle, "Control Structure Diagrams for

Ada," Journal of Pascal, Ada, and Modula 2, Vol. 9, No. 5, September/October 1990.

12. "Introduction to GNAT," Release Documents for GNAT Version 2.07, New York

University, July 16, 1995.

About the Authors

Dr. James H. Cross II is an associate professor of computer science and engineering at Auburn

University. Cross is primarily interested in teaching undergraduate and graduate courses in

software engineering and directing research in software methodology, quality assurance,

testing, metrics, and reverse engineering. In particular, Cross is continuing the development of

software engineering courses in design methodology and software environments. His

continuing research efforts include the GRASP/Ada and QUEST/Ada projects, which are

funded by National Aeronautics and Space Administration and the Advanced Research

Projects Agency. The GRASP/Ada project has focused on reverse engineering and, in

particular, the automatic generation of graphical representations of software. The QUEST/Ada

project has focused on a rulebased approach to the automatic generation of test cases. Cross

has over 30 refereed technical publications.

Dr. Kai H. Chang is an associate professor of computer science and engineering at Auburn

University. Chang is primarily interested in teaching undergraduate and graduate courses in

artificial intelligence and expert systems and directing research in expert systems, software

quality assurance, testing, metrics, and computer-supported cooperative work environments.

His continuing research efforts include the QUEST/Ada project. Chang has over 30 refereed

technical publications.

T. Dean Hendrix is a doctorate candidate in computer science and engineering at Auburn

University and an instructor of computer science at Jacksonville State University. Hendrix's

dissertation topic is markup languages for graphical representations. He is primarily interested

in teaching courses in software engineering and doing research in the areas of programming

languages, software methodology, metrics, and reverse engineering.

